

SV-X5-Series

bus servo

CANopen

Instruction Manual

X Contents

Preface	6
About the instruction manual	6
Confirmations during unpacking	6
Safety precautions	6
Chapter 1 Model introduction colection and installation	10
Chapter 1 Model introduction, selection and installation	10
1.1 About the drive	
1.1.2 Part names	
1.1.3 Basic specifications	
1.1.4 Overload detection characteristics	
1.1.5 Drive dimension	
1.2 About the motor	16
1.2.1 Motor model	16
1.2.2 Motor part names	17
1.2.3 Motor basic specifications	18
1.2.4 Allowable load of the output shaft	23
1.2.5 N-T characteristics chart	24
1.2.6 Encoder specifications	27
1.2.7 About the oil seal	27
1.2.8 Motor dimension	28
1.3 External regenerative resistor selection	34
1.4 Matching models for drives and motors	35
1.5 Selection of peripheral cables and connector accessories	36
1.6 Installation of the drive and motor	37
1.6.1 Installation environment	37
1.6.2 Dustproof and waterproof	
1.6.3 Installation direction and clearance	38
Chapter 2 Motor and drive wiring instructions	40
2.1 System wiring diagram	41
2.2 Description of motor connector interface	44
2.3 Description of drive connector interface	47
2.4 Instructions for using the CN2 interface	48
2.5 Instructions for using the CN4/CN5 interface	
2.6 Instructions for using the CN6 interface (user I/O)	
2.7 Instructions for using the CN7 interface	
2.8 Instructions for user I/O wiring	

54
56
58
61
62
62
62
63
63
66
66
68
70
71
72
72
72
73
74
74
75
76
76
78
80
80
81
82
82
83
84
85
85
86
88
89
89

	ofile velocity mode (PV)	90
5.3.1	Controlword setting in the PV mode	90
5.3.2	Statusword setting in the PV mode	91
5.3.3	Object dictionary list in the PV mode	92
5.3.4	Example of using the PV mode	92
5.4 Pr	ofile torque mode (PT)	93
5.4.1	Controlword setting in the PT mode	93
5.4.2	Statusword setting in the PT mode	94
5.4.3	Object dictionary list in the PT mode	95
5.4.4	Example of using the PT mode	95
5.5 Ho	oming mode (HM)	96
5.5.1	Controlword setting in the HM mode	
5.5.2	Statusword setting in the HM mode	
5.5.3	Object dictionary list in the HM mode	
5.5.4	Example of using the HM mode	
5.5.5	Homing mode introduction	
E / lad	·	
	terpolation mode (IP)	
5.6.1	Controlword setting in the IP mode	
5.6.2 5.6.3	Statusword setting in the IP mode	
	Object dictionary list in the IP mode	
5.6.4	Example of using the IP mode	
5.7 Ele	ectronic gear ratio	132
	-	
5.8 Ins	struction unit	
	er 6 Parameters	
Chapte		133 134
Chapte 6.1 Lis	er 6 Parameters	133 134 135
Chapte 6.1 Lis	er 6 Parameters st of parameters rameter description	133 134 135145
Chapte 6.1 Lis	er 6 Parameters st of parameters rameter description P00 Basic setting	133 134 135145
Chapte 6.1 Lis	er 6 Parameters st of parameters rameter description	133 134 135145149
Chapte 6.1 Lis	er 6 Parameters st of parameters	133 134135145149155
Chapte 6.1 Lis	er 6 Parameters st of parameters	133 134135145149155158
Chapte 6.1 Lis	er 6 Parameters st of parameters	133 134135145149155158162
Chapte 6.1 Lis	er 6 Parameters st of parameters	133 134135145149155158162169
Chapte 6.1 Lis	er 6 Parameters st of parameters	
Chapte 6.1 Lis	er 6 Parameters st of parameters	
Chapte 6.1 Lis	er 6 Parameters st of parameters	
Chapte 6.1 Lis	er 6 Parameters st of parameters	
Chapte 6.1 Lis	er 6 Parameters st of parameters	
Chapte 6.1 Lis	er 6 Parameters st of parameters	133135145145145155158162169173179183192195198
Chapte 6.1 Lis	er 6 Parameters st of parameters	
Chapte 6.1 Lis	er 6 Parameters st of parameters	133135145145155158162169173179183179183192195195198201204

	P20 Key and communication control interface	207
	P21 Status parameters	209
	Digital input (DI) function definition table	214
	Digital output (DO) function definition table	215
6.3	Bus-related function code	217
Cha	pter 7 Error & Alarm and troubleshooting	219
7.1	Error & Alarm code list	220
7.2	Error & Alarm causes and handling measures	221
Cha	pter 8 Examples of application	230
8.1	Connection between X5EN and Beckoff CANopen	231
8.2	Connection between X5EN and Schneider controller CANopen	243
8.3	Connection between X5EN and Inovance controller CANopen	254
Cha	pter 9 Parameter list and object dictionary	263
9.1	1000H List of object group	264
9.2	2100H List of object group	266
	Group 2100h: Basic setting	266
	Group 2101h: Gain tuning	267
	Group 2102h: Vibration suppression	269
	Group 2103h: Speed & torque control	270
	Group 2104h: Digital input and output	272
	Group 2105h: Analog input and output	274
	Group 2106h: Expansion parameters	275
	Group 2107h: Auxiliary function	277
	Group 2108h: Internal position instruction	278
	Group 2109h: Communication setting	282
	Group 2114h: Key and communication control interface	283
	,,	
	Group 2115h: Status parameters	
9.3	Group 2115h: Status parameters	283
9.3	·	283 285

※ Preface

Thank you for using this product. This manual provides information about the SV-X5 series CANopen bus drives and motors.

Incorrect use and handling will not fully utilize the product's performance and may lead to accidents and a shortened product life. Please read this manual carefully and use the product correctly.

About the instruction manual

- Although the contents of this instruction manual are as complete as possible, please feel free to contact us in case of any doubt about the contents.
- Please note the following information in the instruction manual of the equipment to which this product is applied.
- · There is danger due to high voltage.
- There is danger due to residual voltage at the terminals and inside the machine after switching off the power supply.
- · Partial high temperature.
- · Dismantling is strictly prohibited.
- The specifications and functions of this product are subject to change or addition without prior notice due to performance upgrades.
- Please contact us in advance for information on the safety specifications of the device equipped with this product.
- To prolong the service life of the motor and drive, use them under proper operating conditions. For details, refer to the instruction manual.
- The instruction manuals contain the latest product information as much as possible and are subject to change. Please contact us if a new version of the instruction manual is needed.
- Reproduction of this manual in part or whole is prohibited without permission.

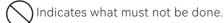
Confirmations during unpacking

- · Whether the physical product matches the ordered product.
- Whether there is any damage during delivery.
- · If problems are found, contact the dealer promptly.

Safety precautions

Please always pay attention to the following safety precautions during acceptance, inspection, installation, wiring, operation, and maintenance.

• The safety instruction levels, which may be caused by the neglect of the instruction or incorrect use of this product, are classified and described in the following table.



Indicates that incorrect handling may result in death or severe injury.

Indicates that incorrect handling may result in injury or property damage.

• What must not be done and what must be done are indicated by the following diagrammatic symbols.

	DANGER 🗘			
	Installation and wiring			
	Do not connect the motor directly to a commercial power.	Otherwise, it may cause fire or malfunction.		
\bigcirc	Do not place any combustibles near the servo motor and drive.	Otherwise, it may cause a fire.		
	Please place the drive within a protective case, and leave specified clearances between the drive and control enclosure walls or other equipment.	Otherwise, it may cause an electric shock, fire, or malfunction.		
_	Please install the drive in a place that frees from excessive dust, water, and oil.	Otherwise, it may cause an electric shock, fire, malfunction, or damage.		
	Please install the drive to incombustible, such as metal.	Otherwise, it may cause a fire.		
	The wiring must be done by a professional electrician.	Otherwise, it may cause an electric shock.		
	The FG terminal of the motor or the drive must be grounded.	Otherwise, it may cause an electric shock.		
	Please cut off the upper circuit breaker before wiring.	Otherwise, it may cause an electric shock, injury, malfunction, or damage.		
	Please ensure a good connection of the cable with its electrified part being well insulated.	Otherwise, it may cause an electric shock, fire, or malfunction.		
	Operation and running			
	Do not touch the internal parts of the drive.	Otherwise, it may cause burns or an electric shock.		
	The cables must not be excessively damaged, stressed, loaded, or pinched.	Otherwise, it may cause an electric shock, malfuncation, or damage.		
	Do not touch the rotating parts of the servo motor during operation.	Otherwise, it may cause injury.		
	Do not use the drive in any place near water, corrosive or flammable gases, and flammables.	Otherwise, it may cause a fire.		
\bigcirc	Do not subject the drive to any extreme vibrations and impact.	Otherwise, it may cause an electric shock, injury, fire.		
S	Do not immerse the cables in oil or water during operation.	Otherwise, it may cause an electric shock, injury, or fire.		
	Do not conduct wiring or perform operations with wet hands.	Otherwise, it may cause an electric shock, injury, or fire.		
	Do not touch the keyway of the motor shaft with bare hands.	Otherwise, it may cause injury.		
	Do not touch the motor, drive, and heat spreaders since they will heat	Otherwise, it may cause burns or component		
	up during operation.	damage.		
	Do not connect the motor to an external power.	Otherwise, it may cause a fire.		
	Other safety precautions			
	Please ensure equipment safety after earthquakes.	Otherwise, it may cause an electric shock, injury, or fire.		
	Ensure a correct installation and setting to prevent fire or personal	Otherwise, it may cause injury, electric shock, fire,		
	injury during earthquakes.	malfunction, or damage.		
	Please provide an external emergency stop circuit to ensure that	Otherwise, it may cause injury, electric shock, fire,		
	opera¬tion can be stopped and power switched off immediately.	malfunction, or damage.		
	Maintenance and inspection			
0	As there's dangerous and high-voltage inside the drive, before wiring or inspection, turn off the power and wait for 5 minutes or more until the charge lamp turns off. Do not disassemble the drive.	Otherwise, it may cause an electric shock.		
	· ·			

	CAUTION 🔼	
	Installation and wiring	
	Please install the servo motor and drive following the combinations	
	specified in this instruction.	Otherwise, it may cause fire or malfunction.
	Do not touch the connector terminals directly.	Otherwise, it may cause an electric shock or
	Do not touch the connector terminals directly.	malfunction.
	Do not block the intake and let any foreign materials enter into the equip-	Otherwise, it may cause an electric shock or
	ment.	fire.
W	The test operation must be done with the motor being fixed but separated	
	from the mechanical system. Only after confirming the operation can the	Otherwise, it may cause injury.
	motor be installed to the mechanical system.	
	The servo motor must be installed following the specified directions and	Otherwise, it may cause injury and malfunc-
	methods.	tion.
	Ensure a proper installation in accordance with the weight and rated	Otherwise, it may cause injury and malfunc-
	output of the equipment.	tion.
	Operation and running	
	Do not stand or put any heavy objects on the equipment.	Otherwise, it may cause an electric shock,
		injury, malfunction, or damage.
	Do not make extreme gain adjustments or changes, which will result in	Otherwise, it may cause malfunction or
$\langle \rangle$	unstable running.	damage.
\bigcirc	Keep it away from the direct sunlight.	Otherwise, it may cause malfunction.
	Do not subject the motor and its axis to heavy impact.	Otherwise, it may cause malfunction.
	The electromagnetic brake on the motor is designed to hold its shaft and	Otherwise, it may cause injury and malfunc-
	should not be used for ordinary braking.	tion.
	When power is restored after an instantaneous power outage, keep away from the machine because it may be restarted suddenly. Set the machine	Oth anxion it may access injury
	so that it is secured against personal injury if restarted.	Otherwise, it may cause injury.
	30 that it is secured against personal injury in restarced.	Otherwise, it may cause an electronic shock,
	Do not use any malfunctioning or damaged motor or drive.	fire, or injury.
	Please confirm that the power supply specification is normal.	Otherwise, it may cause malfunction.
	Holding brake is not a safety stopper used for ensuring machine safety. To	
	ensure safety, install a stopper on the machine side.	Otherwise, it may cause injury.
	When any alarm has occurred, eliminate its cause, ensure safety, and	
	deactivate the alarm before restarting the operation.	Otherwise, it may cause injury.
	The brake relay and the emergency stop relay must be connected in series.	Otherwise, it may cause injury or malfunction.
	Transportation and storage	
	Do not subject the equipment to rain, droplets, toxic gas, or fluid.	Otherwise, it may cause malfunction.
$\langle \rangle$		Otherwise, it may cause injury and malfunc-
\circ	Do not carry the motor by the cables or shaft during transportation.	tion.
		Otherwise, it may cause injury and malfunc-
	Do not drop or overturn the motor during transportation and installation.	tion.
	For long-term storage, please contact HCFA via the contact information	Otherwise, it may cause malfunction.
	listed in this manual.	Otherwise, it may cause manufiction.
	Please store in a storage place that complies with the storage environ-	Otherwise, it may cause malfunction.
	ment specified in this manual.	o and wise, it may eause manufiction.
	Other safety precautions	
	Please insulate the battery with adhesive tape and dispose of it following the	ne law of each country (area).
	When disposing of the equipment, treat it as an industrial waste.	

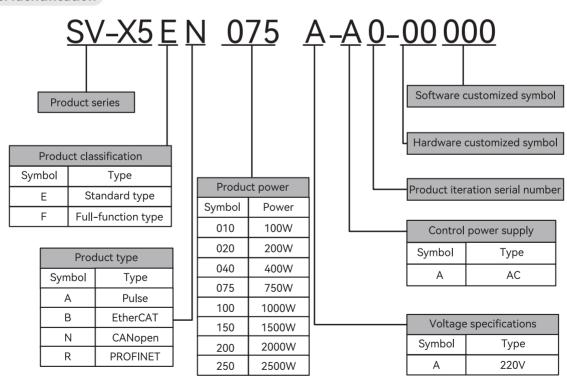
	Maintenance and inspection	
\bigcirc	Please contact HCFA for further instructions on removal, installation, and repair.	Otherwise, it may cause malfunction.
	Do not turn on and off the main circuit power switch too frequently.	Otherwise, it may cause malfunction.
0	Do not touch the heat sink and regenerative resistor of the motor and drive because their temperatures may be high while power is on or for some time after power-off.	Otherwise, it may cause burns or electric shock.
	When the drive becomes faulty, switch off the control circuit and main power.	Otherwise, it may cause a fire.
	If the equipment is to be stored for a long time, please switch off the main	Otherwise, it may cause injury caused by the
	power.	malfunc-tion of the equipment.

Maintenance and inspection

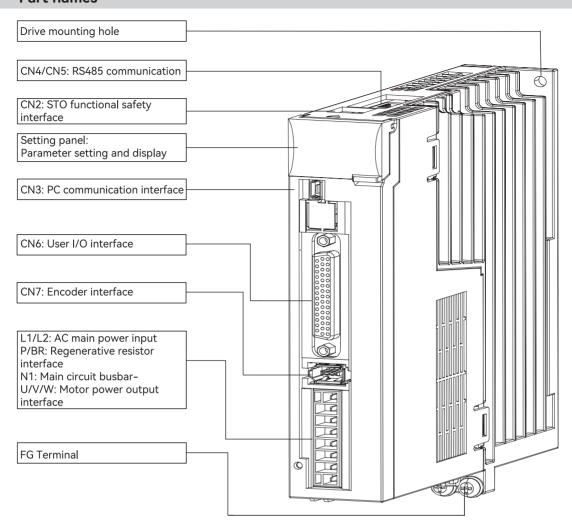
- < Warranty period>
- The term of warranty for the product is eighteen (18) months from the date of manufacture. However, for the motor with a brake, the warranty period does not exceed the maximum period that the shaft can accelerate or decelerate.
- < Warranty coverage >
- This warranty applies only when the condition, method, environment, etc. of use are in compliance with the terms and conditions and instructions that are stated in the instruction. However, even during the warranty period, the repair cost will be charged to customers in the following cases.
- ① A failure caused by improper storing or handling, repair, and modification.
- ② A failure caused by drops or damages during transportation.
- ③ A failure caused by using without following the product specifications.
- ④ A failure caused by external factors such as inevitable accidents, including without limitation fire, earthquake, thunder and lightning, flooding and wind hazard, salty damage, and abnormal fluctuation of voltage.
- ⑤ A failure caused by the intrusion of water, oil, metal sheet, and other foreign materials.
- The warranty coverage is only for the product itself. HCFA bears no joint responsibility and makes no compensation for any further damagnes caused by product malfunction.

Chapter 1 Model introduction, selection and installation

1.1	Abo	out the drive	11
	1.1.1	Drive model	.11
	1.1.2	Part names	.12
	1.1.3	Basic specifications	.13
	1.1.4	Overload detection characteristics	.14
	1.1.5	Drive dimension	.15
1.2	. Abo	out the motor	16
	1.2.1	Motor model	.16
	1.2.2	Motor part names	.17
	1.2.3	Motor basic specifications	.18
	1.2.4	Allowable load of the output shaft	.23
	1.2.5	N-T characteristics chart	.24
	1.2.6	Encoder specifications	.27
	1.2.7	About the oil seal	.27
	1.2.8	Motor dimension	.28
1.3	Ext	ernal regenerative resistor selection	34
1.4	Mat	tching models for drives and motors	35
1.5	Sel	ection of peripheral cables and connector accessories	36
1.6	Inst	allation of the drive and motor	37
	1.6.1	Installation environment	.37
	1.6.2	Dustproof and waterproof	.37
	1.6.3	Installation direction and clearance	.38

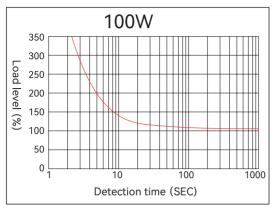

1.1 About the drive

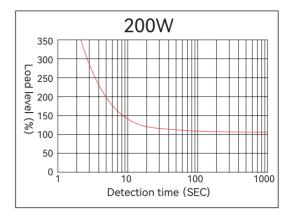
1.1.1 Drive model

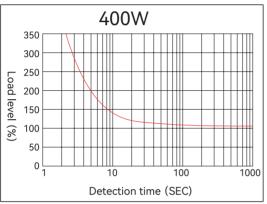

Drive nameplate

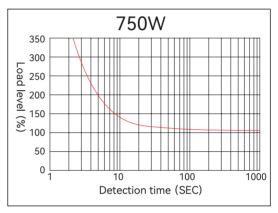
Model identification

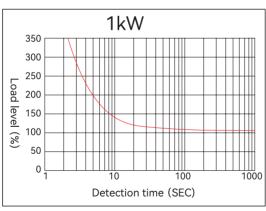
1.1.2 Part names

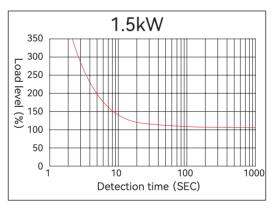


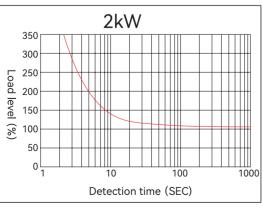

1.1.3 Basic specifications

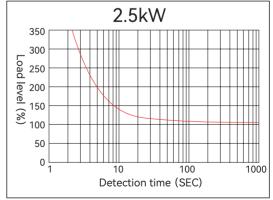

Ite	em				Specifi	cations				
SV-X5EN	□□□А	010	020	040	075	100	150	200	250	
Pov	wer	100W	200W	400W	750W	1kW	1.5kW	2kW	2.5kW	
	W(mm)		35	1	5	52		80	1	
Dimension	H(mm)		162		10	62		170		
	D(mm)		152		1:	52		184		
Voltage	e input		Single-ph	nase 200 ~ 240\	√ 50/60Hz		Single/Three	-phase 200 ~ 2	240V 50/60Hz	
Rated cur	rent (mA)	1.2	2	3	4.5	6	10	12.5	15.6	
Maximur	n output	0.7	,	0	10.5	10	20	07.5	07.5	
curren	t (mA)	3.6	6	9	13.5	18	30	37.5	37.5	
Tempe	erature	Ambient opera	ating temperati	ıre 0 ~ 55°C, A	mbient storage	temperature -	-20 ~ 65°C	1	'	
Hum	idity	Ambient opera	ating or storage	humidity less	than 20 ~ 85%F	RH (with no co	ndensation)			
Altit	ude	Less above 10	00m							
Vibra	ation	5.8m/s ² (0.6G)	or less, 10~60H	Hz (no continuc	us operation a	llowed at frequ	iency of resonal	nce))		
Supported	d protocol	CANopen								
Frame	e type	Standard fram	e with 8 bytes	of data and 11	-bit identifier					
NN	МТ	Slave device								
PDO transm	nission type	Support event	triggering, tim	e triggering, sy	nchronous cycl	e, non-synchro	onous cycle			
TxPDO	number	4 groups			· · · · · · · · · · · · · · · · · · ·	-				
RxPDO	number	4 groups								
Emergen	cy service									
obj	ect	Support								
Node pro	otection/	Support, but cannot be used at the same time								
Heartbeat	protection	Support, but c	annot be used	at the same tir	ne					
EDS	file	Available								
Termination	on resistor	120Ω								
Baud rat	te (bit/s)	20K, 50K, 100k	K, 125K, 250K,	500K (default),	800K, 1M bit/s					
		Profile position	n mode							
		Profile velocity mode								
Modes of	operation	Profile torque mode								
		Homing mode								
		Interpolated p	osition mode							
Digital in	put and	DI: 5								
out	put	DO: 8								
USB comn	nunication	PC communica	ation (connects	with 「HCS-St	tudio」 software	e)				
STO fu	nction	Supported by	F-Series mode	<u> </u>						
Dynami	c brake	Built-in								
Commu	nication	2 Standard 8	nin R I/15 netwo	rk interfaces						
network	interface	2 Standard 8-pin RJ45 network interfaces								
Slave n	iumber	No more than	64 is recomme	nded						

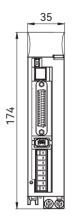

1.1.4 Overload detection characteristics

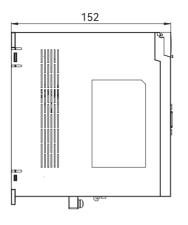

For the X5EN series drive, if the torque of the motor drive surpasses the value specified in the overload detection characteristics mentioned below, the protector will trigger, resulting in an overload abnormality alarm and an emergency stop of the motor.

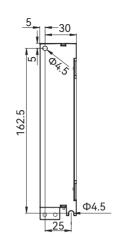


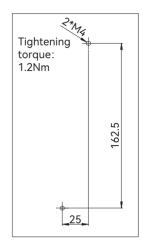




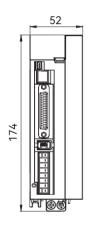


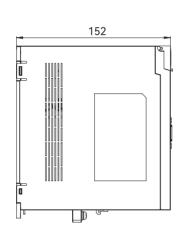


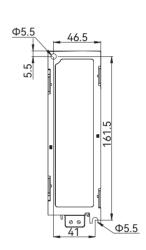


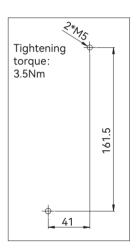

1.1.5 Drive dimension

100W/200W/400W

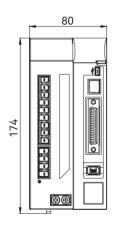


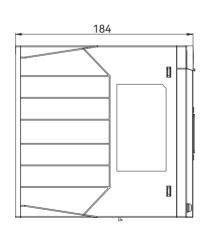


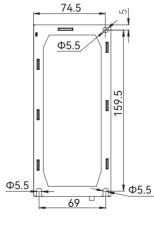


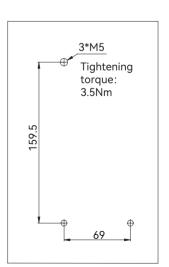


750W/1kW

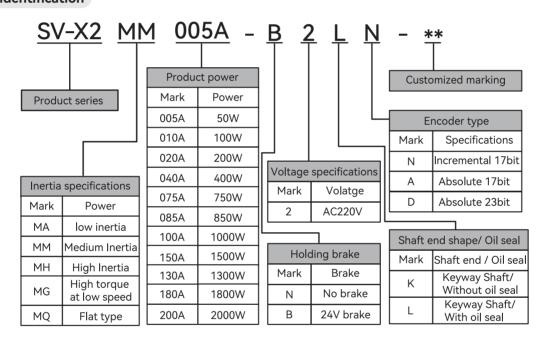




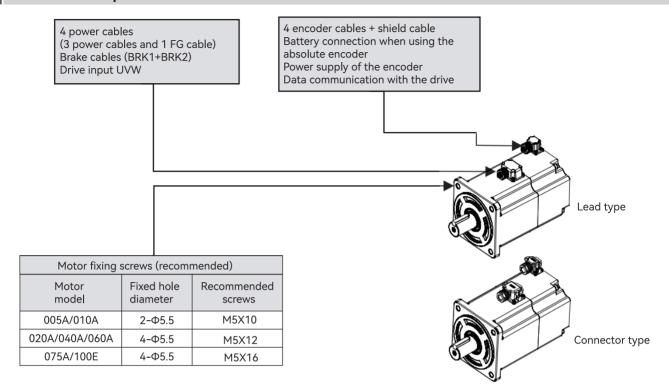




1.5kW/2kW/2.5kW


1.2 About the motor

1.2.1 Motor model


Motor nameplate

Model identification

1.2.2 Motor part names

1.2.3 Motor basic specifications

				AC2	00V~240V				
	Item		Unit			Specifi	cations		
	Voltage		V			DC2	280V		
	otor model	****	-	MH005A	MH010A	MA020A	MH020A	MA040A	MH040A
	(SV-X2 🗆 🗆 🗆 -****) Mounting flange dimension			High inertia	High inertia	Low inertia	High inertia	Low inertia	High inertia
Mounting			mm		0 45	0.0		1.00	4.00
Weight		o brake	kg	0.33	0.45	0.9	0.87	1.28	1.22
	<u> </u>	/ brake	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	0.55	0.66	1.3	1.27	1.67	1.61
		put power	W	50	100	200	200	400	400
		torque	N.m	0.16	0.32	0.64	0.64	1.27	1.27
		aneous m torque	N.m	0.56	1.11	1.91	2.23	3.82	4.46
	Rated	current	Arms	1.1	1.1	1.7	1.4	2.7	2.1
		aneous n current	Arms	5.5	5.5	6.5	6.9	10.2	10.4
	Rated	speed	rmp		<u>I</u>	30	000		I
	Maximum speed		rmp	60	00		50	000	
		constant	N.m/ Arms	0.168	0.327	0.427	0.5	0.488	0.67
	Induced voltage constant per phase		mV/(r/min)	5	10.43	14.5	14.61	17.8	20.85
Baic	Rate of	w/o brake		6.7	14.4	28.9	14.1	60	28.8
specifications	change of rated power	w/ brake	kW/s	6.1	13.8	23.8	13.2	54	27.8
	Mechanical	w/o brake		2.8	2.17	0.728	1.39	0.499	1.3
	time constant	w/ brake	ms	3.09	2.26	0.848	1.49	0.554	1.35
	Electrical ti	me constant	ms	1.12	1.32	6.17	3.9	6.36	4.21
	Motor	w/o brake		0.038	0.071	0.16	0.29	0.28	0.56
	rotor inertia	w/ brake	10 ⁻⁴ kg.m²	0.042	0.074	0.17	0.31	0.29	0.58
	Allowable	Radial load		68	68	245	245	245	245
	load	Axial load	N	58	58	98	98	98	98
	Enc	oder	17bit serial co	mmunication (E	IA422)	<u>I</u>	<u>I</u>	<u> </u>	<u>I</u>
	Appli	cation	Holding brake	(note: not for k	oraking)				
		supply	-	Use a power supply with reinforced insulation due to SELV power supply or hazardous voltage.					or hazardous
	Rated	voltage	V			DC24	V±10%		
Brake	Rated	current	А	0.25	0.3		0.	36	
specifi¬cations	Static frict	ion torque	N.m	0.38 o	r more		1.6 or	more	
	Absorpt	ion time	ms	35 о	r less		50 or	more	
	Releas	se time	ms			20 o	r less		
	Release	voltage	V			DC1V	or more		

	Rated time	Continuous			
	Ambient operating temperature	0°C ~ 40°C (with no condensation)			
	Ambient operating humidity	20 ~ 85%RH (with no condensation)			
	Ambient storage	-20°C ~ 65°C (with no condensation)			
	temperature	Maximum temperature:80°C for 72 hours			
	Ambient storage humidity	20 ~ 85%RH (with no condensation)			
Ambient operating	Operating & Storage atmosphere	Indoors (no direct sunlight) , free from corrosive gas, flammable gas, oil mist, dust and dirt			
condition	Heat resistance rating	Class B			
	Insulation resistance	DC1000V - $5M\Omega$ or more			
	Insulation withstand voltage	AC1500V for 1 minute			
	Altitude	Less above 1000m			
	Vibration rating	V15 (JEC2121)			
	Vibration resistance	49m/s ² (5G)			
	Impact resistance	98m/s ² (10G)			
	Protection rating	IP65/ (IP67)			
	Grounded in accorda	ance with the regulations, applicable to Class I .			
	· Applicable to 「Overvoltage category II」				
	· Applicable to 「Pollution degree 2」				
Note	• Rated torque is the	value shown when mounted on an L-beam approximately 2 times the size of the motor flange.			
	· The brake connectio	n cables have different polarities.			
	Red cable: Connects to	o +24V			
	Black cable: Connects	to GND			

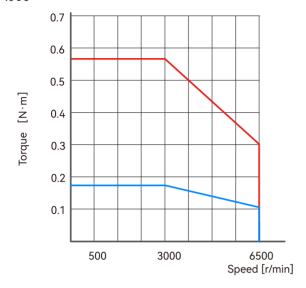
				AC2	00V~240V					
	Item		Unit			Specific	cations			
	Voltage		V	DC280V						
	Motor model (SV-X2 □□□□□ -****)		-	MA075A Low inertia	MH075A High inertia	MMH100C High inertia	MM100A Medium	MM100B Medium	MH100A High inertia	
	CI I:						inertia	inertia		
Mounting	flange dime		mm		2.25	2.70		30	/ 20	
Weight		brake brake	kg	2.25 3.01	3.01	2.68 3.45	6.27	/	6.29 7.89	
	Rated out		W	750	750	1000	1000	1000	1000	
	Rated	•	N.m	2.39	2.39	3.185	4.77	4.77	4.77	
	Instanta	•	11.111	2.57	2.57	3.103	4.77	4.77	4.77	
	maximur		N.m	7.16	8.36	11.13	14.3	14.31	14.5	
	Rated	current	Arms	4.2	3.8	5.7	5.2	8.25	5.2	
	Instanta maximun		Arms	17.4	18.8	30	15.6	25	15.6	
	Rated speed		rmp		3000			2000		
	Maximur	m speed	rmp		4500		3000	5000	3000	
	Torque o	constant	N.m/ Arms	0.583	0.648	0.552	0.918	0.573	0.918	
	Induced voltage constant per phase		mV/(r/min)	21.33	22.65	21.2	33.65	21.2	33.65	
Basic	Rate of	w/o brake		59.4	36.6	44.7	36.9	56	9.96	
specifications	change of rated power	w/ brake	kW/s	53.8	34.4	42.8	30.8	49.3	9.46	
	Mechanical	w/o brake		0.518	1.26	1.19	1.76	1.31	6.52	
	time constant	w/ brake	ms	0.572	1.34	1.24	2.11	1.48	6.86	
	Electrical tir	ne constant	ms	11.4	6.54	4.72	9.5	12.53	9.5	
	Motor rotor	w/o brake	10-61	0.96	1.56	2	6.18	9.16	22.9	
	inertia	w/ brake	10 ⁻⁴ kg.m²	1.07	1.66	2.1	7.4	10.4	24.1	
	Allowable	Radial load		392	392	392	49	490	490	
	load Motor rotor inertia	Axial load	N	147	147	147	196	196	196	
	Enco	oder	17bit serial co	mmunication (E	EIA422)					
	Applic	cation	Holding brake	(note: not for k	oraking)					
	Power	supply	_	Use a power s voltage.	upply with rein	forced insulatio	n due to SELV	power supply o	or hazardous	
	Rated	/oltage	V	-		DC24\	/±10%			
Brake	Rated	current	А		0.42			0.9		
specifications	Static frict	ion torque	N.m		3.8 or more			14 or more		
	Absorpt	ion time	ms		70 or less			100 or more		
	Releas	e time	ms		20 or less			60 or less		
	Release	voltage	V			DC1V c	or more			

	Rated time	Continuous				
	Ambient operating temperature	0°C ~ 40°C (with no condensation)				
	Ambient operating humidity	20 ~ 85%RH (with no condensation)				
	Ambient storage temperature	-20°C ~ 65°C (with no condensation) Maximum temperature:80°C for 72 hours				
	Ambient storage humidity	20 ~ 85%RH (with no condensation)				
Ambient operating	Operating & Storage atmosphere	Indoors (no direct sunlight) , free from corrosive gas, flammable gas, oil mist, dust and dirt				
condition	Heat resistance rating	Class B				
	Insulation resistance	DC1000V-5M Ω or more				
	Insulation withstand voltage	AC1500V for 1 minute				
	Altitude	Less above 1000m				
	Vibration rating	V15 (JEC2121)				
	Vibration resistance	49m/s ² (5G)				
	Impact resistance	98m/s² (10G)				
	Protection rating	IP65/ (IP67)				
	• Grounded in accordance with the regulations, applicable to Class I .					
	· Applicable to 「Overvoltage category II」					
	· Applicable to 「Pollution degree 2」					
Note	• Rated torque is the v	value shown when mounted on an L-beam approximately 2 times the size of the motor flange.				
	· The brake connectio	n cables have different polarities.				
	Red cable: Connects to	+24V				
	Black cable: Connects	to GND				

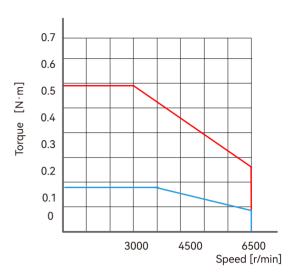
				AC2	200V~240V				
	Item		Unit			Specifi	cations		
	Voltage		V			DC2	280V		
	Motor model (SV-X2 □ □ □ □ □ -****)		-	MM150B Medium inertia	MH150A High inertia	MM200A High inertia	MG085A Large torque at low speed	MG130A Large torque at low speed	MG180A Large torque at low speed
Mounting	Mounting flange dimension		mm	150	130	130	130	130	130
	w/o brake			/	7.37	6.98	4.67	5.87	6.98
Weight		brake	kg kg	/	8.97	8.58	6.27	7.47	8.58
	Rated out	out power	W	1500	1500	2000	850	1300	1800
	Rated	torque	N.m	7.16	7.16	9.55	5.41	8.28	11.5
	Instanta maximur	aneous	N.m	21.5	21.5	28.6	14.3	23.3	28.6
	Rated o	current	Arms	9.5	8	9.9	5.9	9.3	11.8
	Instanta maximun		Arms	29	24	30	15.6	24	30
	Rated speed		rmp	2000				1500	
	Maximum speed		rmp	5000			3000		
	Torque constant		N.m/ Arms	0.672	0.895	0.9645	0.918	0.895	0.9645
Basic specifi-	Induced voltage constant per phase		mV/(r/min)	25.9	34.84	37.95	33.65	34.84	40.18
cations	Rate of change	w/o brake	kW/s	75.4	15.4	75.4	47.4	74.8	109
	of rated power	w/ brake	KVV/5	68.6	14.8	68.6	39.6	75.9	98.7
	Mechanical time	w/o brake	ms	3.16	5.15	1.24	1.76	1.41	0.91
	constant	w/ brake	1113	3.47	5.35	1.37	2.11	1.6	1
	Electrical time constant		ms	14.3	12.7	13.88	9.5	12.7	13.88
	Motor rotor	w/o brake	10-41 2	12.1	33.4	12.1	6.18	9.16	12.1
	inertia	w/ brake	10 ⁻⁴ kg.m²	13.3	34.6	13.3	7.4	10.4	13.3
	Allowable	Radial load	NI	490	490	490	490	490	490
	load	Axial load	N	196	196	196	196	196	196
	Enco	oder	17bit serial co	mmunication (I	EIA422)				
	Applic	cation	Holding brake	(note: not for	braking)				
	Power	supply	-	Use a power s voltage.	supply with rein	forced insulation	on due to SELV	power supply o	or hazardous
Drolin	Rated v	oltage	V			DC24	V±10%		
Brake specifications	Rated o	current	А		0.42			0.9	
specifications	Static fricti	on torque	N.m		3.8 or more			14 or more	
	Absorpti	ion time	ms		70 or less			100 or more	
	Releas	e time	ms		20 or less			60 or less	
	Release	voltage	V			DC1V	or more		

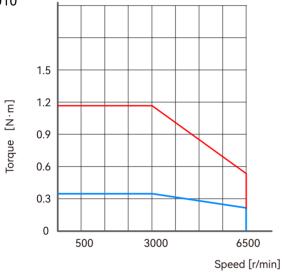
	Rated time	Continuous					
	Ambient operating temperature	0°C ~ 40°C (with no condensation)					
	Ambient operating humidity	20 ~ 85%RH (with no condensation)					
	Ambient storage	-20°C ~ 65°C (with no condensation)					
	temperature	Maximum temperature:80°C for 72 hours					
	Ambient storage humidity	20 ~ 85%RH (with no condensation)					
Ambient operating	Operating & Storage atmosphere	Indoors (no direct sunlight) , free from corrosive gas, flammable gas, oil mist, dust and dirt					
condition	Heat resistance rating	Class B					
	Insulation resistance	DC1000V-5MΩ or more					
	Insulation withstand voltage	AC1500V for 1 minute					
	Altitude	Less above 1000m					
	Vibration rating	V15 (JEC2121)					
	Vibration resistance	49m/s ² (5G)					
	Impact resistance	98m/s ² (10G)					
	Protection rating	IP65/ (IP67)					
	Grounded in accordance with the regulations, applicable to Class I .						
	· Applicable to 「Overvoltage category II」						
	· Applicable to 「Pollution degree 2」						
Note	• Rated torque is the value shown when mounted on an L-beam approximately 2 times the size of the motor flange.						
	· The brake connectio	n cables have different polarities.					
	Red cable: Connects to	n +24V					
	Black cable: Connects	to GND					

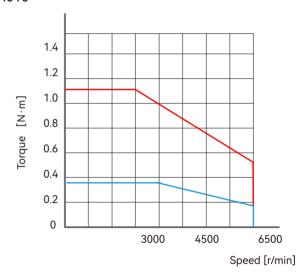
1.2.4 Allowable load of the output shaft

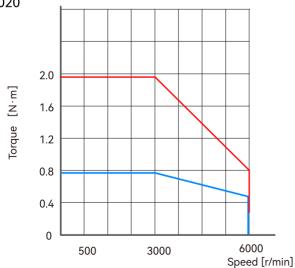

Allowable load	Unit	50W	100W	200W	400W	750W	1kW
Radial direction	N	68.6	68.6	245	245	392	392
Axial direction	N	58.8	58.8	98	98	147	147

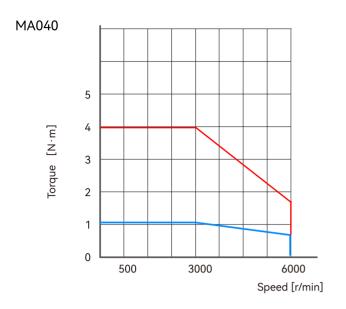
Allowable load	Unit	1.5kW	2kW	850W	1.3kW	1.8kW
Radial direction	N	490	490	490	490	490
Axial direction	N	196	196	196	196	196

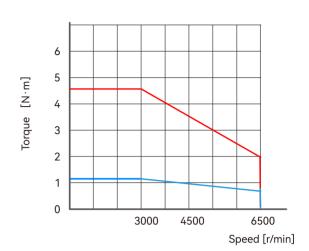

1.2.5 N-T characteristics chart

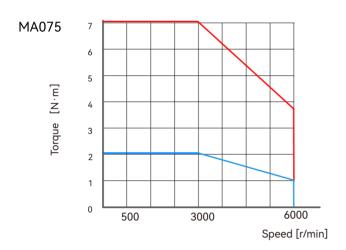

MA005

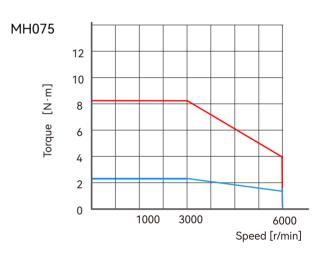

MH005

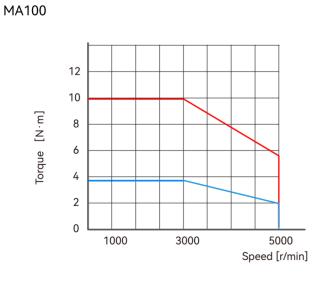

MA010

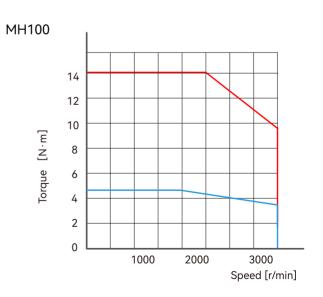



MH010

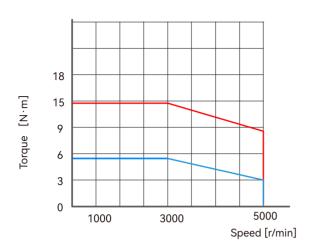

MA020

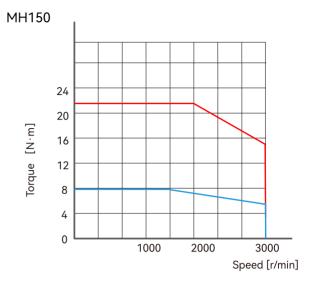


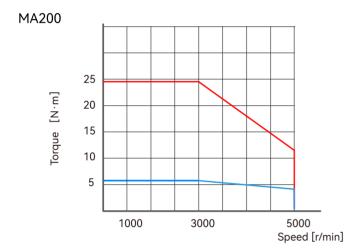




MH040





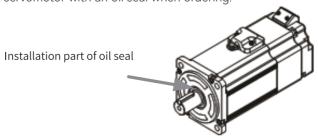


1.2.6 Encoder specifications

Item	Specifi	cations	Note
Model name	SV- 🗆 🗆 🗆 🗆 🗆 -***N (17bit)	_	
Supply voltage VCC	DC4.5\	/ ~ 5.5V	5% or less
External power supply BAT	_	DC2.4V ~ 5.5V	_
External capacitor CAP	_	DC2.4V ~ 5.5V	_
Supply voltage VCC current consumption	Typ 1	Typ 160mA	
External power supply BAT current		T 10A	Battery voltage 3.6V when motor
consumption	— Typ 10μA		is stopped at room temperature
One-turn optical resolution	Absolute 13	1,072 (17bit)	_
Multiple-turn revolution count	N/A	_	
Maximum rotation speed	6,000	r/min	_
Output and input pattern	Differential t	transmission	_
Upward counting direction (Note 1)	CCW d	irection	_
Transmission method	Half-duplex non-simultan		
Communication speed	2.51		
Operating temperature	0 ~ 8		
External interference magnetic field	±2mT (20	G) or less	

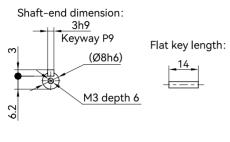
Note 1: Upward counting direction

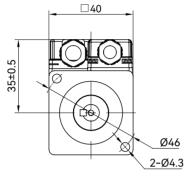
CCW

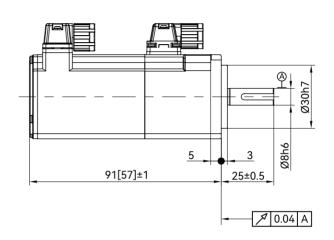

*When viewed from the front of the flange, the shaft rotates counterclockwise, i.e., CCW.

[Note]

- * For motors with a brake, observe the brake voltage specifications.
- * If the brake voltage is less than 12V or in reverse polarity, the 1-turn rotation accuracy will deteriorate.

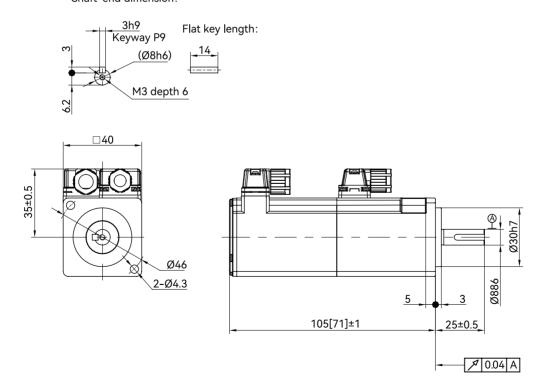

1.2.7 About the oil seal

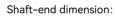

When used in combination with a gearhead, oil may seep into the motor through the output shaft, so use an oil seal toprevent oil from seeping into the motor, and all SV-X2 series motors are equipped with a part for mounting an oil seal. If an oil seal is required, specify the SV-X2 servomotor with an oil seal when ordering.

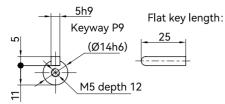


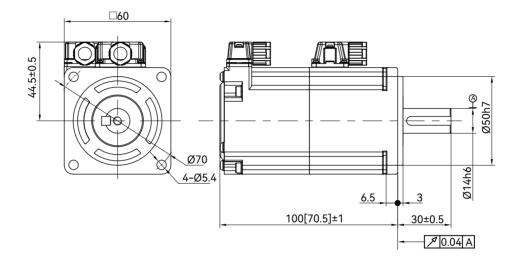
1.2.8 Motor dimension

MH005A High inertia

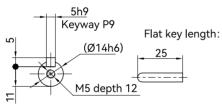


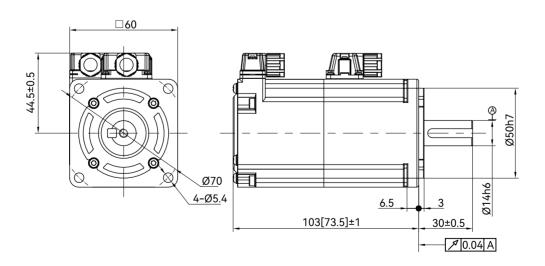



MH010A High inertia

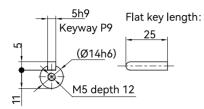

Shaft-end dimension:

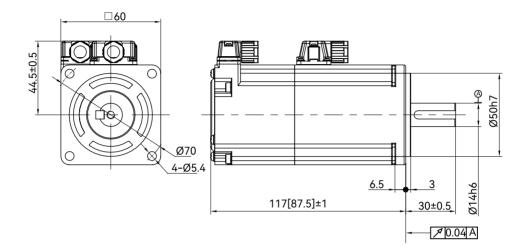
MH020A High inertia



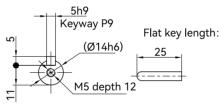


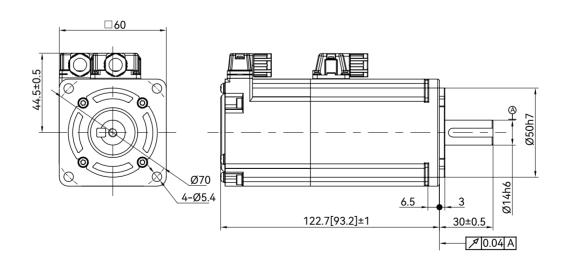
MA020A High inertia


Shaft-end dimension:

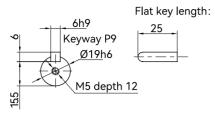


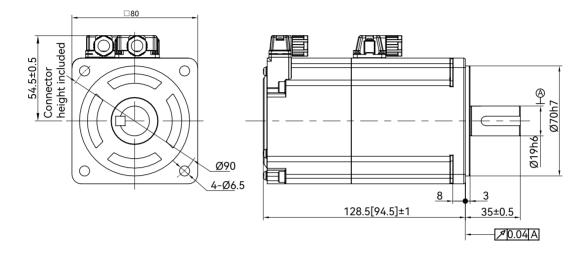
MH040A High inertia

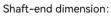

Shaft-end dimension:

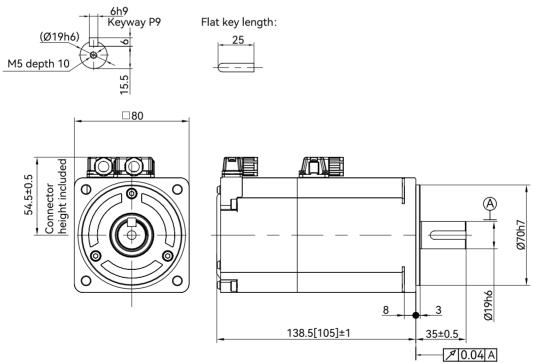


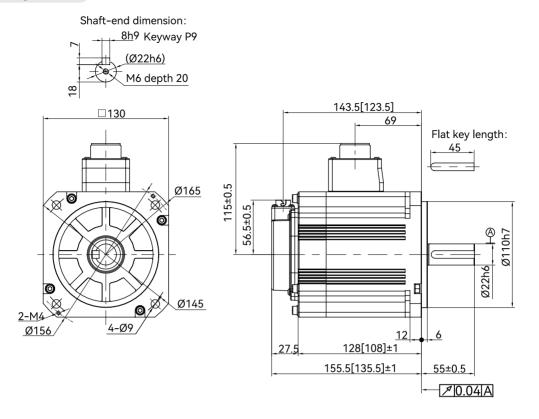
MA040A High inertia


Shaft-end dimension:

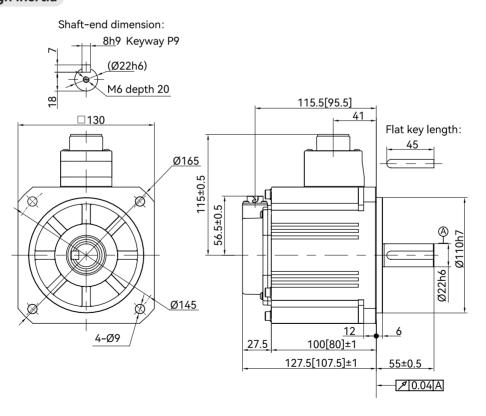



MH075A High inertia

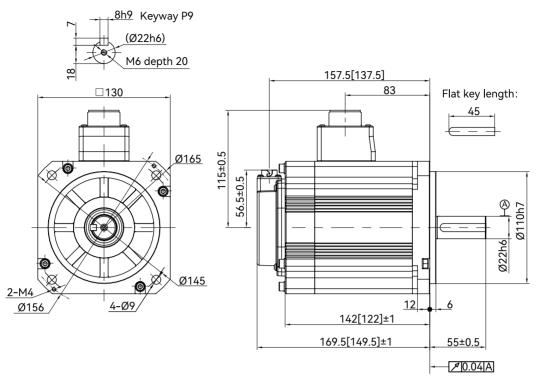

Shaft-end dimension:



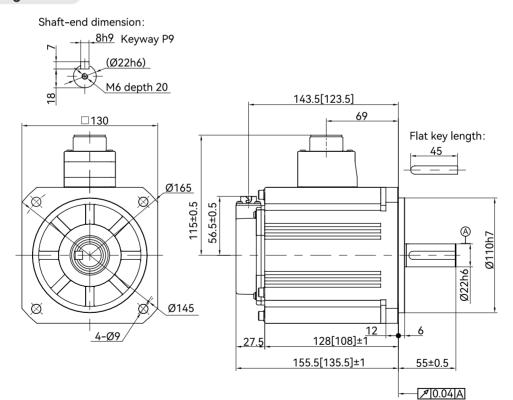
MA075A High inertia



MH100A High inertia



MM100A High inertia



MH150A High inertia

Shaft-end dimension:

MM200A High inertia

1.3 External regenerative resistor selection

For a drive with a power of 100W~1000W, an optional regenerative resistor is available, and the regenerative resistor should be connected to terminals P, and BR.

For a drive with a power of 1500W~2500W, the regenerative resistor is a standard feature, and the factory machine is shorted to terminals P, and C by default, i.e., the internal regenerative resistor is used. If the external regenerative resistor is required, disconnect terminals P, and C and connect the resistor to terminals P, and D.

The corresponding braking resistor selection for each power model is as follows:

Power	100W	200W	400W	750W	1000W	1500W	2000W	2500W
Resistance and corresponding power	50Ω	50Ω	50Ω	50Ω	50Ω	40Ω	40Ω	40Ω
of optional/standard regenerative resistor	50W	50W	50W	80W	80W	100W	100W	100W
Power range of external	≥ 45Ω	≥ 45Ω	≥ 45Ω	≥ 40Ω	≥ 40Ω	≥ 30Ω	≥ 30Ω	≥ 30Ω
regenerative resistor	≥ 50W	≥ 50W	≥ 50W	≥ 80W	≥ 80W	≥ 100W	≥ 100W	≥ 100W

Note

- 1. For the drive with a power of 1500W~2500W, when using an external regenerative resistor, please set the drive parameter P00.21 to 1.
- 2. The recommended regenerative resistor specifications in the above table are not guaranteed to meet all usage occasions. If the regenerative resistor's heating temperature is too high, please replace it with a higher power resistor and make sure that the resistor value complies with the permissible range of resistance value in the above table.

1.4 Matching models for drives and motors

Power supply input rating	Capacity	Servo motor model		Motor frame number (Flange dimension mm)	Drive model	
	50W	High inertia	MH005A			
	100W	High inertia	MH010A	40	SV-X5EN010A-A	
	10000	Flat type	MQ010A			
		Low inertia	MA020A			
	200W	High inertia	MH020A	60	SV-X5EN020A-A	
		Flat type	MQ020A			
	400W	Low inertia	MA040A			
220V		High inertia	MH040A	60	SV-X5EN040A-A	
		Flat type	MQ040A			
	750W	Low inertia	MA075A	80	SV-X5EN075A-A	
		High inertia	MH075A	00	21-Y2EIN0124-A	
ZZUV	1KW	High inertia	MQ100E	80	SV-X5EN100A-A	
		Medium inertia	MM100A	130	SV-X5EN100A-A SV-X5EN100A-A	
		High inertia	MH100A	150	3V-X3EN 100A-A	
	1.5kW	Medium inertia	MM150A		SV-X5EN150A-A	
	1.5KVV	High inertia	MH150A	1	2A-Y2FIA120A-Y	
	2kW	Medium inertia	MM200A		SV-X5EN200A-A	
	850W	Large torque at low speed	MG085A	120		
	85077	Large torque at low speed	MG085S	130	CV/ VEEN1150A A	
	1 21447	Large torque at low speed	MG130A		SV-X5EN150A-A	
	1.3kW	Large torque at low speed	MG130S			
	1.8kW	Large torque at low speed	MG180A		SV-X5EN250A-A	

1.5 Selection of peripheral cables and connector accessories

(1) Voltage input class 220V: 750W or less

Item	Application	Name	Note
1	Drive and motor power connector	PWR-CON 750W	
		Connection cable-CAB-PWR75A-0.5M	Length: 0.5 m
		Connection cable-CAB-PWR75A-1.5M	Length: 1.5 m
2	Drive and motor power connection cable	Connection cable-CAB-PWR75A-3M	Length: 3 m
		Connection cable-CAB-PWR75A-5M	Length: 5 m
		Connection cable-CAB-PWR75A-10M	Length: 10 m
3	Encoder cable terminal	ENC-TE 750W	
		Connection cable-SVCAB-ENC75A-0.5M	Length: 0.5 m
		Connection cable-SVCAB-ENC75A-1.5M	Length: 1.5 m
4	Regular encoder cable	Connection cable-SVCAB-ENC75A-3M	Length: 3 m
		Connection cable-SVCAB-ENC75A-5M	Length: 5 m
		Connection cable -SVCAB-ENC75A-10M	Length: 10 m
	Alexander and a sale	Connection cable -SVBOX-ENCABS +	
5	Absolute encoder cable	Connection cable -SVCAB-ENC75A-3M	

(2) Voltage input class 220V: 1kW ~ 2.5kW

Item	Application	Name	Note
1	Drive and motor power connector	PWR-CON 1kW	
		Connection cable -CAB-PWR100A-0.5M	Length: 0.5 m
		Connection cable -CAB-PWR100A-1.5M	Length: 1.5 m
2	Drive and motor power connection cable	Connection cable -CAB-PWR100A-3M	Length: 3 m
		Connection cable -CAB-PWR100A-5M	Length: 5 m
		Connection cable -CAB-PWR100A-10M	Length: 10 m
3	Brake connector	PWB-CON 1kW	
4	Encoder cable terminal	ENC-TE 1kW	
		Connection cable -CAB-ENC100A-0.5M	Length: 0.5 m
		Connection cable -CAB-ENC100A-1.5M	Length: 1.5 m
5	Regular encoder cable	Connection cable -CAB-ENC100A-3M	Length: 3 m
		Connection cable -CAB-ENC100A-5M	Length: 5 m
		Connection cable -CAB-ENC100A-10M	Length: 10 m
		Connection cable -CAB-ENC100A-ABS-0.5M	Length: 0.5 m
		Connection cable -CAB-ENC100A-ABS-1.5M	Length: 1.5 m
6	Absolute encoder cable	Connection cable -CAB-ENC100A-ABS-3M	Length: 3 m
		Connection cable -CAB-ENC100A-ABS-5M	Length: 5 m
		Connection cable -CAB-ENC100A-ABS-10M	Length: 10 m

◆ Circuit breaker selection

Make sure to have a circuit breaker on the power input side of the drive to prevent accidents when using internal short circuits.

(1) Main circuit power supply single-phase input (L1/L2)

Model	L1C-L2C control power Circuit breaker (A) recommended	L1-L2 main power supply Circuit breaker (A) recommended	Main power supply Circuit breaker (A) recommended
SV-X5EN010A-A	-	6	6
SV-X5EN020A-A	-	6	6
SV-X5EN040A-A	-	10	10
SV-X5EN075A-A	-	16	16
SV-X5EN100A-A	-	16	16
SV-X5EN150A-A	6	20	20
SV-X5EN200A-A	6	25	25
SV-X5EN250A-A	6	25	25

(2) Main circuit power supply three-phase input (L1/L2/L3)

Model	L1C-L2C control power Circuit breaker (A) recommended	L1-L2-L3 main power supply Circuit breaker (A) recommended	Main power supply Circuit breaker (A) recommended
SV-X5EN150A-A	6	10	10
SV-X5EN200A-A	6	16	16
SV-X5EN250A-A	6	16	16

1.6 Installation of the drive and motor

1.6.1 Installation environment

Please ensure an installation environment that meets the following conditions as follow.

- 1 Install the equipment in a place out of direct sunlight.
- ② The drive must be installed in a control cabinet.
- ③ Free from water, oil (cutting oil, oil mist), and moisture.
- 4 Free from flammable and explosive gases, sulfuric gases, chlorinated gases, ammonia, and other corrosive atmospheres including acid/alkali and salt.
 - ⑤ Free from dust, iron powder, cutting powder, and so on.
 - **6** Free from high temperature, excessive vibrations, and severe impacts.

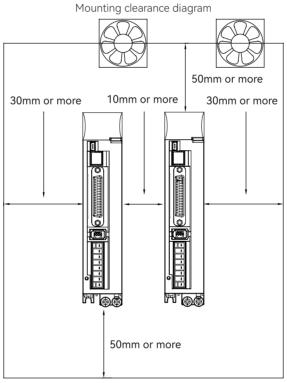
When installing in an environment that is not specified above, please consult HCFA in advance.

1.6.2 Dustproof and waterproof

The drive is not waterproof, and the protective structure of the motor, except for the shaft output part and the connector part, complies with the IEC 34-5 (International Electrical Standards Association) IP65 standard.

1.6.3 Installation direction and clearance

◆ Impact, weight-bearing

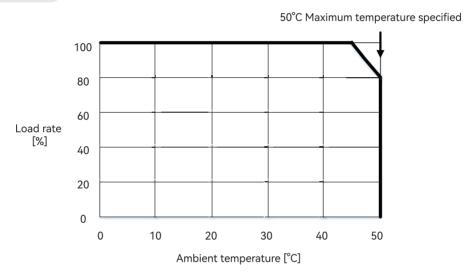

- ① The motor can withstand an impact of 200m/s2 (20G) or less. When transporting, mounting, or dismounting the motor, do not apply excessive impact or weight. Do not hold the encoder part, cable part, or connector part during transport.
 - ② A claw puller must be used when removing the pulley and coupling from the motor shaft.

Integration with the mechanical system

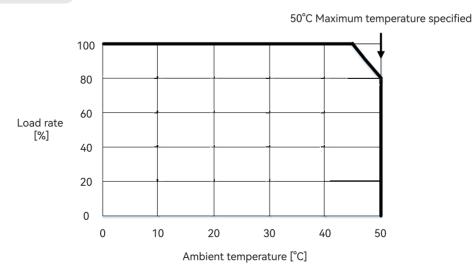
- ① The motor specifications state the permissible load value of the motor shaft. Exceeding the permissible load value may shorten the lifetime of the internal bearings of the motor and cause damage to the motor shaft. Use a shaft coupling that can fully absorb the eccentricity load.
 - ② Do not apply more than 6kgf or more pressure to the encoder cable when assembling the motor.
 - ③ Bend the power and encoder cables to a radius of R20mm or more.

◆ Installation direction and clearance

When installing the drive, please leave sufficient clearances to ensure effective heat dissipation and convection in the sealed control cabinet.

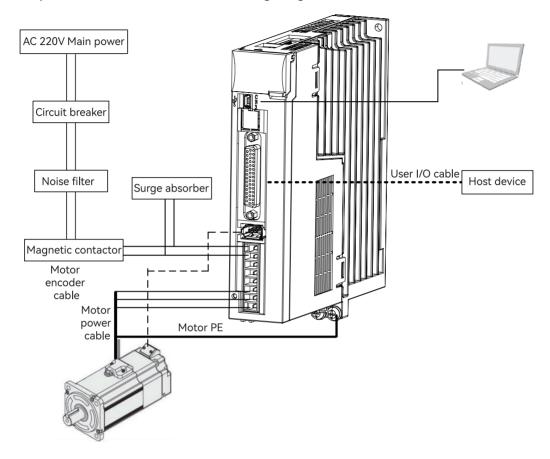

- The drive can be installed only in the vertical direction. During installation, use two M4 screws to fix the drive with an output power of 100W~400W. Use two M5 screws to fix the drive with an output power of 750W~1000W. Use three M5 screws each to secure the drive with an output power of 1500W~3000W.
- When installing the drive into the sealed cabinet such as a control cabinet, it is necessary to use fans or cooling machines to ensure that the ambient temperature around plates is lower than 55°C. A fan or cooler is required for cooling.
 - The surface temperature of the cold plates would be 30°C higher than their surrounding temperature.
 - Use heat-resistant wiring materials and isolate them from temperature-sensitive machines and cables.
- The life span of the servo drive depends on the temperature around the electrolytic capacitor. When the electrolytic capacitor is near the end of its life span, the static capacity will decrease and internal resistance will increase. Consequently, it will lead to overvoltage alarm, malfunction caused by noise, and component damages. The life span of the electrolytic capacitor is approximately 5 to 6 years under the condition of an average annual temperature of 30°C, 80% load rate, and average operation time of less than 20 hours per day.

◆ Ambient temperature efficiency of the drive


100W~400W model

750W~1000W model

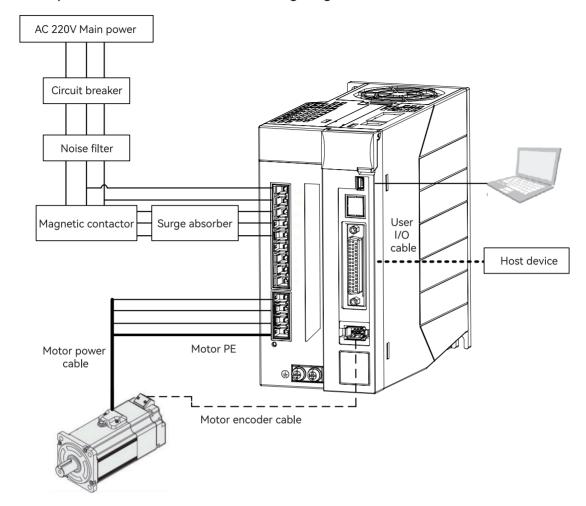
1500W~2500W model


Chapter 2 Motor and drive wiring instructions

2.1	System wiring diagram	41
2.2	Description of motor connector interface	44
2.3	Description of drive connector interface	47
2.4	Instructions for using the CN2 interface	48
2.5	Instructions for using the CN4/CN5 interface	50
2.6	Instructions for using the CN6 interface (user I/O)	50
2.7	Instructions for using the CN7 interface	52
2.8	Instructions for user I/O wiring	53

2.1 System wiring diagram

Instructions for connecting a servo motor with a servo drive


Power input AC220V (100W~1000W wiring diagram)

◆ Points for correct wiring

- (1) The power supply is connected to L1 and L2, please use the single-phase AC220V.
- (2) Please use a twisted-pair shielded cable if the I/O cable is longer than 50cm.
- (3) The encoder cable should be shorter than 20m.
- (4) The common DC bus of the drive must be of the same voltage input level and should be powered up at the same time.

◆ Power input AC220V (1500W~2500W wiring diagram)

◆ [Points for correct wiring]

- (1) The control circuit power supply and the main power supply should be wired from the same AC220V power supply.
- (2) The main power supply can be selected from single-phase or three-phase AC220V input. When selecting single-phase input, either two of L1, L2, or L3 can be selected.
 - (3) Please use a twisted-pair shielded cable if the I/O cable is longer than 50cm.
 - (4) The encoder cable should be shorter than 20m.

Table 2.1.1 Description of servo drive and servo motor connection

ltem	Description
D : 1 11 : "	In order to comply with European EC standards, select the appropriate device for each specification and
Peripheral device composition	set it according to 「Figure 2.1 System wiring diagram」.
Installation environment	The drive can be installed in a pollution degree 2 or pollution degree 1 environment according to IEC60664-1.
Power supply 1: AC200 to 240V	
(Main circuit and control circuit power supply)	The drive can be used in overvoltage category II power supply environments according to IEC60664-1.
Power supply 2: DC24V I/O power supply Motor brake release power supply	The following conditions must be met to select the specifications for the DC24V external power supply. Use a SELV power supply (**) with a capacity of 150W or less, which is a CE-compliant condition. **SELV: safety extra low voltage (Safety extra low voltage/non-hazardous voltage. Hazardous voltage requires reinforced insulation)
Wiring	For motor power cables, AC220V input cables, FG cables, and main circuit power distribution cables of multi-axis configurations, use AWG18/600V voltage-resistant cables for the power of 750W or less, and AWG14/600V voltage-resistant cables for the power of 1kW or more.
Earth leakage circuit breaker	In order to protect the power cable, it is necessary to disconnect the circuit when overcurrent flows. According to 「Figure 2.1 System wiring diagram」, be sure to use a IEC-specified and UL-approved circuit breaker between the power supply and the noise filter. To comply with EMC standards, use a circuit breaker with a leakage detection function recommended by HCFA.
	Prevents noise interference from the power cable.
Noise filter	To comply with EMC standards, use the noise filters recommended by our company.
Electromagnetic contactor	Perform main power switching (ON/OFF). Connect an overvoltage protector for use.
Surge absorber	To comply with EMC standards, use an overvoltage protector recommended by our company.
Signal cable noise filter / Ferrite core	To comply with EMC standards, use the noise filter recommended by our company.
Regenerative resistor	There is no internal braking resistor in this product. A regenerative resistor is required when the internal smoothing capacitor of the power supply device is not sufficient to absorb and process regenerative power. For reference, check the regenerative discharge condition on the setting panel, and use the regenerative resistor when the regenerative voltage warning is ON. For the reference specifications of regenerative resistor, please refer to [External regenerative resistor selection]. Use the built-in thermostat and set the overheat protection circuit.
Earth grounding	The products are equipped with protection settings for Class 1 equipment. The products are grounded using a protective grounding terminal, which is implemented in a protective box or electrical box with EMC compliance. The protective earth terminal is indicated by the FG mark as shown below.

2.2 Description of motor connector interface

Motor connector terminal arrangement and wiring color coding

Voltage input AC 220V (750W or less)

Motor connector and pin arrangemen(50~750W)

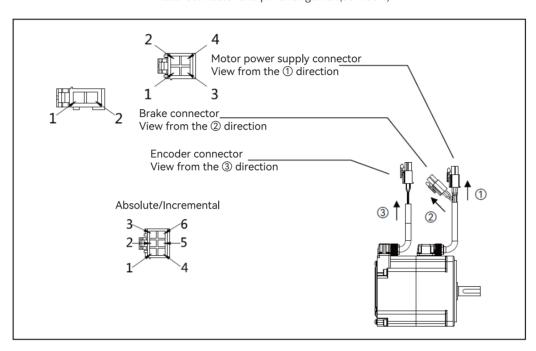


Table2.2.1 List of cables (750W or less)

Name	Cable	
Motor power input	AWG18	
Brake (Note 1)	AWG22	
Encoder (incremental)	Power supply: AWG22	
Encoder (absolute)	Signal: AWG24	

Note 1: Applicable to motors with brakes.

Table 2.2.2 For motor with the power of 750W or less

Name	Terminal No.	Signal name	Description	Wiring color coding
	1	U	Motor power U-phase output Red Motor power V-phase output White Motor power W-phase output Black	
Matanaaniani	2	V	Motor power V-phase output	White
Motor power input	3	W	Motor power W-phase output	Black
	4	FG	Motor housing grounding	Yellow-Green
Dual 1 [*1]	1	BRK+	Brake power supply DC24V	Blue (Brown)
Brake [*1]	2	BRK-	Brake power supply GND	Yellow (orange dot)
	1	BAT+	Encoder power supply +	Yellow (red dot)
	2	+D	Serial communication data +	White (red dot)
Encoder (incremental/	3	-D	Serial communication data -	White (black dot)
absolute)	4	VCC	Encoder power supply 5V output	Orange (red dot)
	5	GND	Signal grounding	Orange (black dot)
	6	SHIELD	Shielded cable	Black

Note 1: Applicable to motors with brakes.

◆ Voltage input AC220V (1kW~2.5kW)

Motor connector and pin arrangement

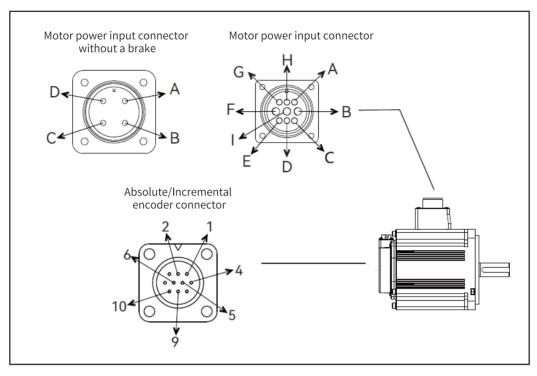
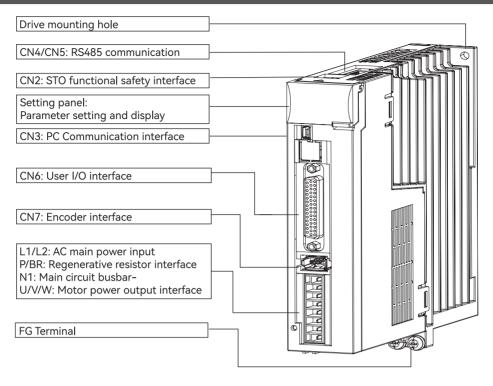


Table2.2.3 List of cables (750W or less)

Name	Cable
Motor power input	AWG19
Brake (Note 1)	AWG21
Encoder (incremental)	AWG24
Encoder (absolute)	AvvGZ4

Note 1: Applicable to motors with brakes.

Table 2.2.4 For motor power with the power of 750W or less

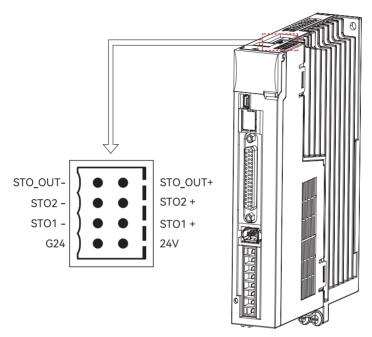

Name	Terminal No.	Signal name	Description	Note
	1	U	Motor power U-phase output	
Matan a a company and la	2	V	Motor power V-phase output	
Motor power cable	3	W	Motor power W-phase output	
	4	FG	Motor housing grounding	
DI [*1]	1	BRK+	Brake power supply DC24 V	
Brake [*1]	2	BRK-	Brake power supply GND	
	1	VCC	Encoder power supply 5V output	
	2	GND	Signal grounding	
	3		NC	
	4		NC	
	5	+D	Serial communication data +	
Encoder (incremental)	6	-D	Serial communication data -	
	7		NC	
	8		NC	
	9		NC	
	10	SHIELD	Shielded cable	

	1	VCC	Encoder power supply 5V output	
	2	GND	Signal grounding	
	3	CAP	External capacitor [*2]	
	4	BAT	External battery [*3]	
Encedor (abactuta)	5	+D	Serial communication data +	
Encoder (absolute)	6	-D	Serial communication data -	
	7	IC	Internal connection	
	8	IC	Internal connection	
	9	GND	Signal grounding	
	10	SHIELD	Shielded cable	

Note:

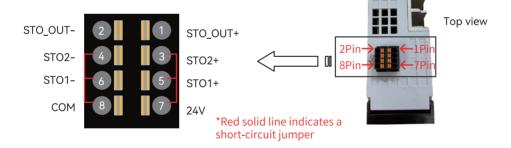
- 1. Applicable to motors with brakes.
- 2. The external capacitors and batteries have GND as their reference potential.
- 3. The internal circuit (IC) is already connected internally and does not need to be connected to any cables here.

2.3 Description of drive connector interface



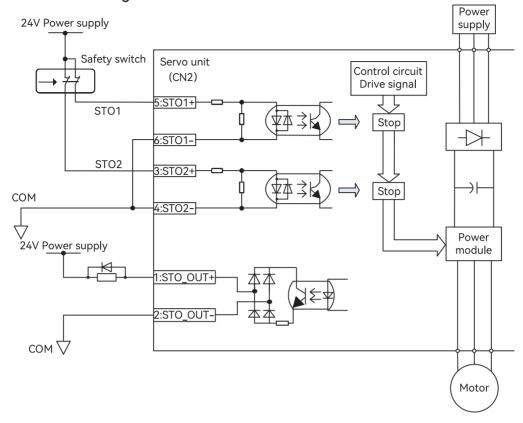
Drive connector terminal description

Name	Terminal No.	Terminal pin No.	Signal name	Description
AC control a succession of		1	L1	AC as about a surger in out
AC control power input		2	L2	AC control power input
Regenerative resistor	8PIN	3	Р	The positive polarity of the busbar voltage
connection	OPIN	4	BR	Regenerative resistor connection interface (P ,BR)
The negative polarity of the busbar		5	N	The negative polarity of the busbar voltage
		6	U	Motor power U-phase output
Motor power output	8PIN	7	V	Motor power V-phase output
		8	W	Motor power W-phase output
	CN7	1	VCC	Encoder power supply 5V output
		2	GND	Encoder power supply ground
Encoder		3~4	NC	_
Elicodei	CIV	5	+D	Encoder signal: data input and output
		6	-D	Encoder signal: data input and output
		_	FG	Shield wire is connected to the connector housing
		1	VBUS	USB power supply
		2	D-	USB data-
PC communication	CN3	3	D+	USB data +
		4	NC	
		5	GND	USB signal ground
User I/O	CN6	Refer to description of user-control terminal (CN6)		


2.4 Instructions for using the CN2 interface

Safe Torque Off (STO) is a safety function that prevents the drive from transferring energy to the motor to generate current. If the STO function is activated, the drive stops and prepares to output a signal (S-RDY) to enter the safe status, and the panel will display "sto".

◆ CN2 Safety function terminal:


X5FB series drives are equipped with safety function terminals, if the safety function is not used, please short circuit jumpers according to the following diagram. If the safety function is needed, please follow the wiring diagram of the STO safety function to connect with the host device.

◆ CN2 pin definition:

Name	Symbol	Terminal No.	Signal name	Description
		1	STO_OUT+	Manifest as the state of the st
		2	STO_OUT-	-Monitor output for safety function signals
		3	STO2+	
	CNIO	4	STO2-	Two separate sets of circuits, turn off the drive
STO function	CN2	5	STO1+	signal of the power module and cut off the power
		6	STO1-	-supply
		7	24V	latera d'Alliera force
		8	COM	Internal 24V interface

◆ STO function block diagram:

Instructions for using the STO function

STO1 switch	STO2 switch	STO_OUT status	Servo drive status
Closed	Closed	OFF	ready
Closed	Open	OFF	sto
Open	Open	ON	sto
Open	Closed	OFF	sto

STO safety precautions

When using the STO function, ensure that the safety requirements of the system are met. The following safety considerations should be taken into account for STO function actions:

- 1. If an external force is applied along the vertical shaft, the motor will rotate. To maintain the position of the motor, an external brake needs to be applied to hold the position. In addition, it's important to note that the brake on motors with brakes is designed exclusively for holding and cannot be used for stopping.
- 2. If no external force is applied and the dynamic brake fails to stop the motor at the set position, the motor will coast to stop, which will result in a longer stopping distance. It is important to be aware of this situation when using the motor to prevent any potential issues.
- 3. The STO function cuts power to the motor, but not the servo drive, which means that no electric insulation is carried out. To ensure safety during servo drive or equipment maintenance, disconnect the main power supply.

2.5 Instructions for using the CN4/CN5 interface

CANopen network interface definition: The standard 8-pin RJ45 network interface is used, and the definition is as shown in the figure:

Pin	Definition		
1	CAN_H		
2	CAN_L		
3	CANGND		
4	485+		
5	485-		
6	-		
7	-		
8	-		

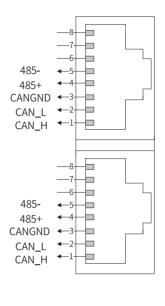
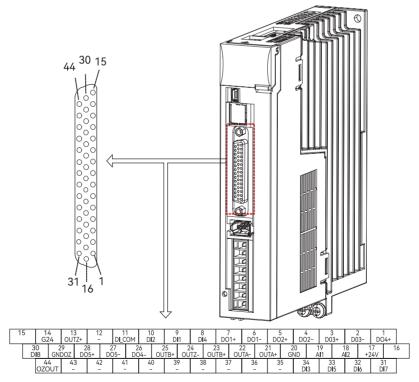
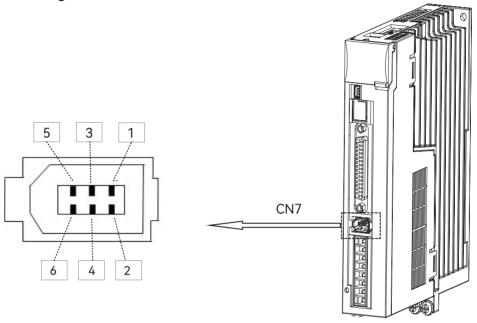



Figure 2-1 CANopen network interface definition

2.6 Instructions for using the CN6 interface (user I/O)

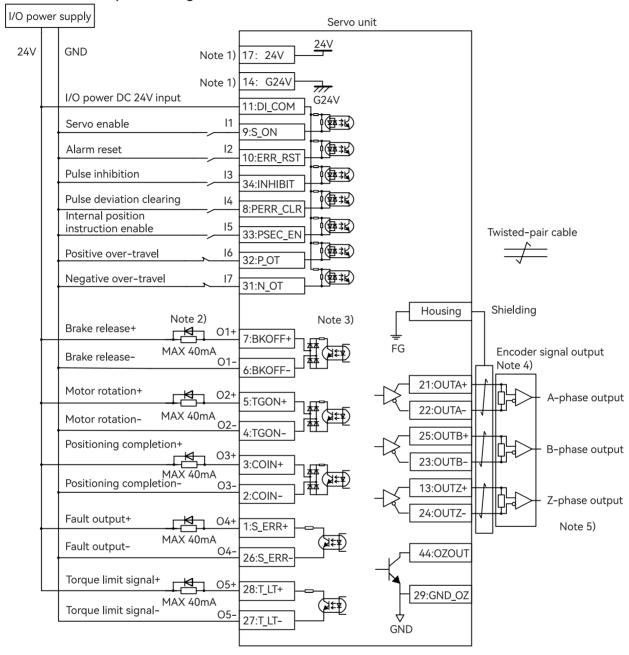

Description of user-control terminal (CN6)

Name	Terminal No.	Signal name	Description
	1	DO4+	Digital signal output +
	2	DO3-	Digital signal output -
	3	DO3+	Digital signal output +
	4	DO2-	Digital signal output -
	5	DO2+	Digital signal output +
	6	DO1-	Digital signal output -
	7	DO1+	Digital signal output +
	8	DI4	Digital signal input
	9	DI1	Digital signal input
	10	DI2	Digital signal input
	11	DI_COM	Digital signal input common terminal
	12	-	-
	13	OUTZ+	Pulse output Z signal +
	14	G24V	Drive power supply GND
	15-16	-	-
	17	+24V	Drive power supply 24V output
	18	Al1	Analog input 1
	19	Al2	Analog input 2
	20	GND	Analog reference GND
	21	OUTA+	Pulse output A signal +
	22	OUTA-	Pulse output A signal -
User control I/O terminal	23	OUTB-	Pulse output B signal -
	24	OUTZ-	Pulse output Z signal -
	25	OUTB+	Pulse output B signal +
	26	DO4-	Digital signal output -
	27	DO5-	Digital signal output -
	28	DO5+	Digital signal output +
	29	GND_OZ	Collector Z signal output reference ground
	30	DI8	Digital signal input
	31	DI7	Digital signal input
	32	DI6	Digital signal input
	33	DI5	Digital signal input
	34	DI3	Digital signal input
	35	-	-
	36	-	-
	37	-	-
	38	-	-
	39	-	-
	40	-	-
	41	-	-
	42	-	-
	43	-	-
	44	OZOUT	Collector Z signal output

2.7 Instructions for using the CN7 interface

The interface is used for connecting the drive to the motor encoder. When using, the cable should be 30cm away from the main circuit wiring.

◆ CN7 interface diagram:



◆ CN7 pin definition:

		1	VCC	Encoder power supply 5V output
		2	GND	Signal ground
	CNIZ	3~4	NC	_
Encoder	CN7	5	+D	Encoder signal: data input/output
		6	-D	Encoder signal: data input/output
		_	FG	Connect the shielded cable to the connector housing

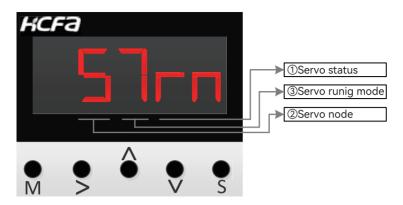
2.8 Instructions for user I/O wiring

◆ Take the example of using external 24V

Note 1) The control power supply output (24V, G24V) can be used as a power supply for I/O (COM+, COM-), with a maximum output current of 150 mA. When driving an output such as a relay, holding brake, etc., use an independent external power supply.

Note 2) When driving a load with an inductive component such as a relay, connect a protection circuit (continuity diode).

Note 3) Depending on the wiring method, the output pin can output high or low level. Please wire according to actual requirements.


Note 4) A termination resistor is required to be connected to the differential signal connection terminals of the differential pulse output.

Note 5) The shield of the connecting cable between the drive and the host device needs to be connected to the drive housing and the host device housing respectively.

Chapter 3 Tuning

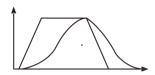
3.1	Tun	ing	56
3.2	Aut	comatic gain tuning	58
3.3	Ada	aptive filter	61
3.4	Ma	nual gain tuning	62
	3.4.1	Overall description	62
	3.4.2	Tuning in the position mode	62
	3.4.3	Tuning in the speed mode	63
	3.4.4	Gain switching function	63
	3.4.5	Feedforward function	66
	3.4.6	Mechanical resonance suppression	66
	3.4.7	Low-frequency vibration suppression	68
3.5	Ine	rtia identification and initial angle identification	70

Panel display and operation

Key description

M	Exit the higher level panel display and return to the lower level panel display.
S	Access the panel display of the memory, or confirm parameter modifications.
	Multiply the corresponding authority value by step 1 to increment the number value.
•	Multiply the corresponding authority value by step 1 to increment the number value.
	Move to modify the digital bit. For 32-bit numbers, press and hold the key to display the high bit on a page, and press and hold it again to display the sign bit on another page. In the zero-level panel, pressing this key can switch the display of the monitored parameter.

Display description


Name	Meaning	Description
		no ry: Servo not ready
		o ry: Servo is ready
1: Servo status display	Display servo status	XX rn: Servo is enabled
		AL.XXX: Servo reports an alarm
		Er. XXX: Servo reports a fault
		0: Initialization
	The CANopen node status is displayed. The order of node status change from regular	1: Disconnected
2: CANopen node status		2: Connected/ Ready
z. CANoper node status		4: Stopped
	power-up to operation is: 0-2-7F-5.	5: Operable
		7F: Pre-operation
		0: No operation mode
		1: Profile position mode (PP)
4: Operation mode display	Displays the operation made of the conve	3: Profile velocity mode (PV)
4: Operation mode display	Displays the operation mode of the servo	4: Profile torque mode (PT)
		6: Homing mode (HM)
		7: Interpolation position mode (IP)

3.1 Tuning

Overall description

◆ Purpose:

Servo drives need to drive motors stably, quickly, and accurately, allowing the motor to faithfully track position, speed, or torque instructions with as little delay as possible. To achieve this, the gain of the servo drive control loop must be tuned.

Gain setting grade: Low Position loop gain: 20.0 1/s Speed loop gain: 50.0Hz Speed loop integral time: 50.0 Speed feedforward: 0

Inertia ratio: 1.00

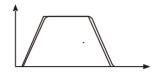
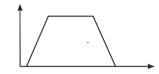



Figure 3.1 Example of gain definition

Gain setting grade: High Position loop gain: 100.0 1/s Speed loop gain: 50.0Hz Speed loop integral time: 50.0

Speed feedforward: 0 Inertia ratio: 1.00

Gain setting grade: High + feedforward

Position loop gain: 100.0 1/s Speed loop gain: 50.0Hz Speed loop integral time: 50.0 Speed feedforward: 50.0

Inertia ratio: 1.00

◆ Procedure:

After confirming the compatibility of servo drive and servo motor, users can follow procedures below for gain tuning:

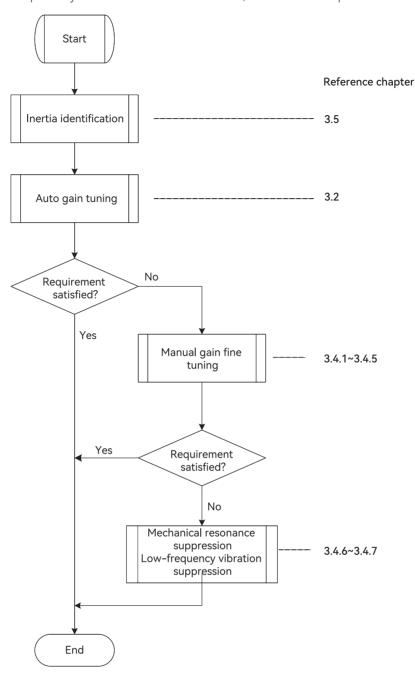


Figure 3.2 Gain tuning flowchart

3.2 Automatic gain tuning

Function description

Overview:

Automatic gain tuning means that with the rigidity level selection function (P00-03), the servo drive will automatically generate a set of matched gain parameters to meet the needs of stability, accuracy, and speed.

◆ Procedure:

Before starting the automatic gain tuning process, it is important to perform self-learning of the load parameters (which currently consists mainly of load inertia identification) or to obtain the relevant load parameters by manual calculation.

The automatic gain tuning process is shown below. There are two main types of real-time auto-tuning modes (P00.02):

- 1-Standard mode, which is mainly applicable to speed and torque control.
- 2-Positioning mode, which is mainly applicable to the position control mode, and has the same effect as the standard mode in speed control and torque control. The setting range of rigidity level (P00.03) is from 0 to 31. Level 0 corresponds to the weakest rigidity and the smallest gain; level 31 corresponds to the strongest rigidity and the largest gain.

Depending on the load type, the following empirical values for the rigidity level can be used for reference:

Level 5 to 8, some complex transmission machinery.

Level 9 to 14, belt drive, cantilever beam structure and other systems with low rigidity.

Level 15 to 20, higher rigidity systems such as ball screws, rack and pinion, and direct drive systems.

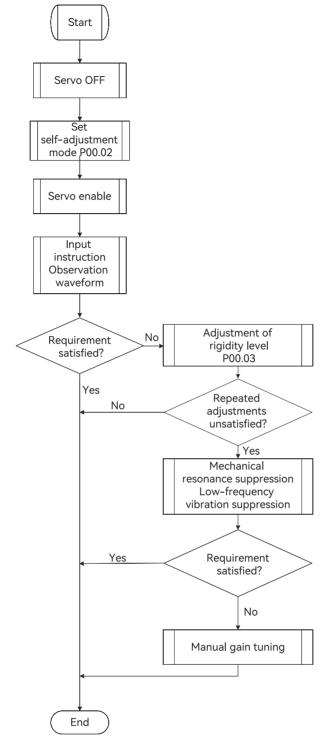


Figure 3.3 Automatic gain tuning flowchart

◆ Relevant parameters:

Functio	n code	Name	Description	Unit	Value	Eff	ective	Relevant mode
P00	02	Real time auto-tuning	0: Invalid; 1: Standard auto-tuning 2: Positioning mode	1	0	Immediate	Set at stop	PST
P00	03	Rigidity grade setting	0~31	1	12	Immediate	Set at operation	PST
P00	04	Inertia ratio	0~30.00	0.01	100	Immediate	Set at operation	PST

◆ Parameters that are updated automatically:

As the rigidity level changes, the servo drive automatically calculates the gain parameters internally, thereby updating the following parameters.

Function code		Name	Description	Unit	Value
P01	00	Position loop gain 1	1.0 1/s ~ 2000.0 1/s	0.1 1/s	Automatic update
P01	01	Speed loop gain 1	1.0Hz ~ 2000.0Hz	0.1Hz	Automatic update
P01	02	Speed loop integral time 1	0.15ms ~ 512.00ms	0.01ms	Automatic update
P01	04	Torque instruction filtering 1	0.00ms ~ 100.00ms	0.01ms	Automatic update
P01	05	Position loop gain 2	1.0 1/s ~ 2000.0 1/s	0.1 1/s	Automatic update
P01	06	Speed loop gain 2	1.0Hz ~ 2000.0Hz	0.1Hz	Automatic update
P01	07	Speed loop integral time 2	0.15ms ~ 512.00ms	0.01ms	Automatic update
P01	09	Torque instruction filtering 2	0.00ms ~ 100.00ms	0.01ms	Automatic update

◆ Parameters that are set to fixed values:

Function code		Name	Description	Unit	Value
P01	03	Speed detection filtering 1	0.00ms ~ 100.00ms	0.01ms	0.00ms
P01	08	Speed detection filtering 2	0.00ms ~ 100.00ms	0.01ms	0.00ms
P01	12	Speed feedforward gain	0.0% ~ 100.0%	0.1%	30.0%
P01	13	Speed feedforward filtering time	0.00ms ~ 64.00ms	0.01ms	0.50ms
P01	15	Torque feedforward gain	0.0% ~ 100.0%	0.1%	0.0%
P01	16	Torque feedforward filtering time	0.00ms ~ 64.00ms	0.01ms	0.00ms
P01	03	Speed detection filtering 1	0.00ms ~ 100.00ms	0.01ms	0.00ms

◆ Parameters that are updated on conditions:

The following parameters are set to fixed values when the real-time auto-tuning mode is the positioning mode, otherwise they remain unchanged.

Function code		Name	Description	Unit	Value
		1 2	0: The 1st gain fixed 1: The 2nd gain fixed 2: Utilize DI input (GAIN-SWITCH) 3: Large torque instruction		
P01	18	Position control switching mode	4: Sharply-changed speed instruction 5: Large speed instruction 6: Large position deviation (P) 7: With position instruction (P) 8: Uncompleted positioning (P) 9: Large actual speed (P) 10: With position instruction (P) actual speed (P)	1	10
P01	19	Position control switching delay	0~1000.0ms	0.1ms	5.0ms
P01	20	Position control switching class	0~20000 (Unit: based on gain switching mode descrip¬tion)	1	50
P01	21	Position control switching hystere-sis	0~20000 (Unit: based on gain switching mode descrip¬tion)	1	33
P01	22	Position gain switching time	0~1000.0ms	0.1ms	3.3ms

3.3 Adaptive filter

Function description

◆ Overview:

In actual operation, the internal resonance detection module of the drive uses the vibration components in the motor feedback to determine the resonance frequency, and accordingly automatically sets the parameters of the built-in notch filter to attenuate the vibration near the resonance point.

This function is only available in the position control and speed control modes, where the motor is in a state of unobstructed normal rotation (not in a state of speed limitation, torque limitation, travel limitation, or clearing of the position deviation counter).

◆ Precautions: The adaptive filter function may not be effective under the following conditions: The adaptive filter function may not be effective under the following conditions:

- 1. When the resonant point frequency is less than 3 times the speed response frequency;
- 2. When the peak resonance or gain is so low that the effect of the resonance on the control performance is not visible;
- 3. When there are more than 3 resonance points;
- 4. When the speed of the motor changes drastically due to mechanical non-linear factors;
- 5. When the rapid acceleration instruction (the absolute value of acceleration and deceleration speed is more than 30,000rpm/s).

◆ Procedure:

Set the adaptive filter mode (P02.02) to a value other than 0 or 4, and input the enable command and control instruction. The effect of the resonance point will be shown in the motor speed. The resonance detection module will detect the mechanical resonance point and display it in parameters P02.31~P02.36, and at the same time, the parameters of the 3rd notch filter or (and) 4th notch filter will be updated dynamically according to the number of the set adaptive filters. Generally, if mechanical vibration is detected, P02.02 can be set to 1, and then the parameters of the 3rd notch filter will be updated automatically. After the parameters are stabilized, observe whether the mechanical vibration is effectively suppressed, and if the effect is satisfactory, set P02.02 to 0 and work with fixed parameters. However, given that some mechanical systems have more than one resonance point, if a relatively large residual vibration is found, set P02.02 to 2. At this time, the parameters of the 4th notch filter will also be automatically updated to attenuate the vibration of another vibration point. If the result is satisfactory, set P02.02 to 0 and work with fixed parameters. If there is still a large vibration, it can be suppressed by manually setting the 1st and 2nd notch filter parameters (see Section 3.4.6 for details).

Relevant parameters:

Function	on code	Name	Description	Unit	Parameter value
			0-4		
			0: Adaptive is invalid, the 3rd and the 4th filters are		
			functioning but parameters are not updated;		
			1: One adaptive filter is valid. Only the 3rd filter is		
			functioning with updated parameters.		
P02	02	Adaptive filter mode	2: Two adaptive filter are valid. The 3rd and the 4th	1	0
			filters are functioning with updated parameters.		
			3: Resonance frequency testing, but parameters are		
			not updated.		
			4: Clear adaptive records, the 3rd & 4th filters are not		
			functioning.		
P02	31	Resonance point 1 frequency	50 ~ 5000Hz	1Hz	Display parameter

P02	32	Resonance point 1 bandwidth	0 ~ 20	1	Display parameter
P02	33	Resonance point 1 depth	0 ~ 99	1	Display parameter
P02	34	Resonance point 2 frequency	50 ~ 5000Hz	1Hz	Display parameter
P02	35	Resonance point 2 bandwidth	0 ~ 20	1	Display parameter
P02	36	Resonance point 2 depth	0 ~ 99	1	Display parameter

◆ Parameters that are updated automatically:

Function code		Name	Description	Unit	Parameter value
P02	10	The 3rd notch filter frequency	50 ~ 5000Hz	1Hz	5000Hz
P02	11	The 3rd notch filter width	0 ~ 20	1	2
P02	12	The 3rd notch filter depth	0 ~ 99	1	0
P02	13	The 4th notch filter frequency	50 ~ 5000Hz	1Hz	5000Hz
P02	14	The 4th notch filter width	0 ~ 20	1	2
P02	15	The 4th notch filter depth	0 ~ 99	1	0

3.4 Manual gain tuning

3.4.1 Overall description

◆ Overview:

The X5EN series servo drives can use the automatic gain tuning function in most applications. However, under certain complex load conditions, automatic gain tuning may not always result in optimal performance. Therefore, it is necessary to readjust the gain parameters. This section explains the manual gain tuning method in various control modes.

When tuning the gain parameters, the response curve of the instruction can be observed by the background software installed on the computer, which can be used as a reference for manually tuning the parameters.

3.4.2 Tuning in the position mode

Refer to the following procedure for manual gain tuning during position control mode:

- 1. Set the correct load inertia value P00.04, or set it automatically with the load parameter self-learning function.
- 2. Set the following parameters to the default values shown in the table below:

P01	00	Position loop gain 1	40.0
P01	01	Speed loop gain 1	20.0Hz
P01	02	Speed loop integral time 1	30.00m
P01	03	Speed detection filtering 1	0.00ms
P01	04	Torque instruction filtering 1	1.00ms
P01	05	Position loop gain 2	40.0
P01	06	Speed loop gain 2	20.0Hz
P01	07	Speed loop integral time 2	30.00m
P01	08	Speed detection filtering 2	0.00ms
P01	09	Torque instruction filtering 2	1.00ms
P01	10	Speed regulator PDFF coefficient	100.0%
P02	00	Position instruction smoothing filtering	0
P02	01	Position instruction FIR filtering	0

P00	02	Adaptive filter mode	0
P02	02	The 1st notch frequency (manual)	0
P02	04	The 2nd notch frequency (manual)	5000
P02	07	The 3rd notch frequency	5000
P02	10	The 4th notch frequency	5000
P02	13	The 1st damping frequency	5000
P02	19	The 2nd damping frequency	0
P02	20	Position instruction smoothing filtering	0
P02	22	Position instruction FIR filtering	0
P01	18	Position control switching mode	0
P01	23	Speed control switching mode	0
P01	27	Torque control switching mode	0
P01	12	Speed feedforward gain	0
P01	13	Speed feed-forward filtering time	0

3. Adjust the parameter values in the table below as target values until the desired performance index is achieved.

P01	00	Position loop gain 1	50.01/s	Observe the positioning time, if the positioning time is too long, increase this value;
- 101				otherwise, reduce it. If the time is too long, vibration may occur.
P01	01	Speed loop gain 1	30.0Hz	Adjust the gain upwards provided that no vibration occurs, there are no abnormal
PUI	01	Speed loop gain 1	30.002	noises, and there is no significant overshoot, otherwise adjust it downwards.
D04	02	Speed loop integral time	25.00ms	If the value is reduced, the positioning time decreases. If the value is too small,
P01	02			vibration may occur. If the value is large, it may not be able to converge to 0.
D01	04	Torque instruction filter 1	0.50ms	When vibration occurs, try to change this value. This value is used in conjunction
P01	04			with P01.02 and is positively correlated.
		2 Speed feedforward gain	30.0%	Increase the feedforward gain can reduce the real-time position devi-ation
P01	12			without causing vibrations and rattles. Uneven input instructions can be improved
	12			by increasing the feedforward filter time constant P01.13. Before using speed
				feedforward, set P01.11 to a non-zero value.

3.4.3 Tuning in the speed mode

The procedure for the speed control mode is similar to that for the position control mode, except for the position loop related parameters P01.00, P01.05, and the speed feedforward parameters P01.12, P01.13.

3.4.4 Gain switching function

The procedure for the speed control mode is similar to that for the position control mode, except for the position loop related parameters P01.00, P01.05, and the speed feedforward parameters P01.12, P01.13.

◆ Procedure

The following effects can be achieved by switching the gain according to the internal status or by an external signal:

- 1. Suppress vibration during stop while improving the dynamic response of servo following performance as much as possible.
 - 2. Increase the gain of the whole timing to shorten the positioning time.
 - 3. Switch gain according to external signals.

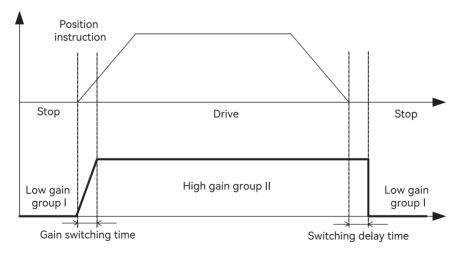


Figure 3.4 Gain switching example

◆ Procedure:

Here is an example of how to achieve high-response following during operation and low noise and vibration during stop.

- 1. Firstly, the gain switching function is not enabled, the 1st gain is fixed, and the 1st gain is adjusted when there is a run¬ning instruction so that the motor can achieve a good dynamic following performance.
 - 2. Copy the group 1 gain parameters to group 2 parameters.
- 3. Set the gain switching conditions, P01.18 can be set to 7 for position control, and P01.19~P01.22 can be set according to actual needs, and the default value can be used.
- 4. When the instruction stops, the 1st speed loop gain (P01.01) is reduced and the torque instruction filtering time (P01.04) is slightly increased, which causes the noise to stop and the vibration to decrease.

Gain switching condition description:

	The 2nd gain switching condition			Delay time	Switching hysteresis	Switching hysteresis
No.	P01.18	Applica-	Timing	P01.19	P01.20	P01.21
INO.	P01.23	ble mode	diagram	P01.24	P01.25	P01.26
	P01.27			P01.28	P01.29	P01.30
0	The 1st gain fixed	PST		Inapplicable	Inapplicable	Inapplicable
1	The 2nd gain fixed	PST		Inapplicable	Inapplicable	Inapplicable
2	Utilize DI input (GAIN-SWITCH)	PST		Inapplicable	Inapplicable	Inapplicable
3	Large torque instruction	PST	А	Applicable	Applicable (%)	Applicable (%)
4	Sharply-changed speed instruction	S	В	Applicable	Applicable (10rpm/s)	Applicable (10rpm/s)
5	Large speed instruction	PS	С	Applicable	Applicable (1rpm/s)	Applicable (1rpm/s)
	Lorge position deviation	Р	D	Analiaabla	Applicable (1 Encoder	Applicable (1 Encoder
6	Large position deviation	P	D	Applicable	resolution unit)	resolution unit)
7	With position instruction	Р	Е	Applicable	Inapplicable	Inapplicable
8	Uncompleted positioning	Р	F	Applicable	Inapplicable	Inapplicable
9	Large actual speed	Р	С	Applicable	Applicable (1rpm/s)	Applicable (1rpm/s)
10	With position instruction	Р	G	Applicable	Applicable (1rpm/s)	Applicable (1rpm/s)

◆ View the following timing diagrams in numbered order in the figure 3.5:

- 1. When the gain switching condition is "Utilize DI input (GAIN-SWITCH)", only when the function code DI function GAINSWITCH switching selection (P01.17) is set to 1 will the gain switching of groups 1 and 2 be carried out. Otherwise, the P/PI switching of the speed loop will be carried out.
 - 2. The delay time only applies when the 2nd gain returns to the 1st gain.
- 3. When P01.18 is equal to 10, the definition of each parameter is different from other modes, so please refer to the G diagram in the Figure. 3.5.

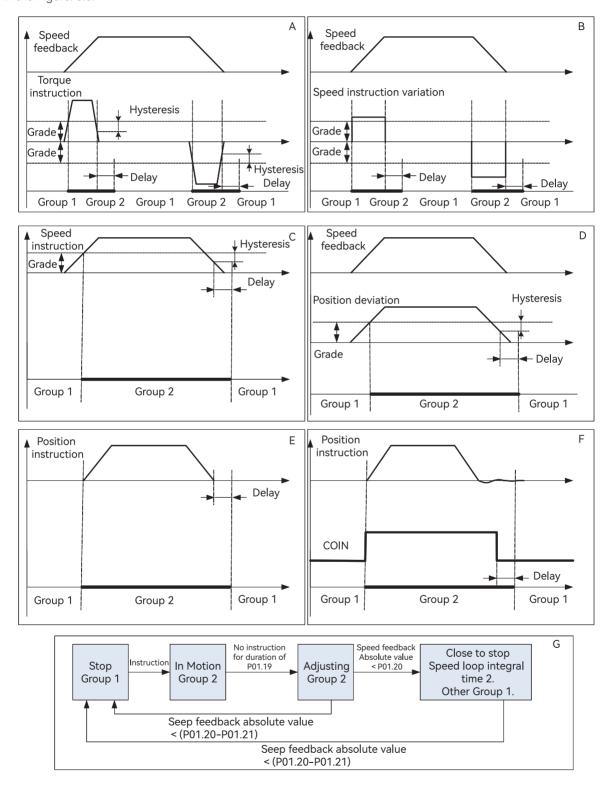


Figure 3.5 Timing diagram of gain switching under various conditions

3.4.5 Feedforward function

Overview:

For position control, the desired speed control value can be calculated from the position control instruction, i.e. the speed feedforward. This is added to the speed instruction regulated according to the feedback to output the actual speed control in-struction. Compared with a feedback-only control system, this algorithm reduces the real-time position deviation and improves the system response characteristics. The larger the feedforward gain, the smaller the position deviation will be. Theoretically, when the feedforward gain is equal to 100%, the position deviation is equal to 0.

The position deviation follows the calculation formula:

Position deviation = (Position instruction speed / Position loop gain) x (100.0% - Speed feedforward gain).

Similarly, the desired torque control value, i.e. the torque feedforward, can be calculated from the speed control instruction. This is added to the torque instruction regulated from the feedback to output the actual torque control instruction. This algo¬rithm reduces the real-time speed deviation and improves the system response characteristics compared to a feedback-only control system. In position control, the use of torque feedforward can reduce the position deviation in the constant acceleration section. When using torque feedforward, make sure the load inertia parameter (P00.04) is set correctly.

In practice, when the feedforward gain is too large, it may lead to a significant overshoot (position overshoot), which can cause mechanical vibration. The machine will work with a large sound, at this time, vibration and noise can be reduced by two methods:

- 1: Turn down the feedforward gain;
- 2: Increase the time constant of the feedforward filter.

◆ Relevant parameters:

Functio	Function code Name		Setting range	The smallest unit	Default setting
P01	11	Speed feedforward control selection	Speed feedforward control selection	1	0
P01	12	Speed feedforward gain	Speed feedforward gain	0.1%	30.0%
P01	13	Speed feedforward filtering time	Speed feedforward filtering time	0.01ms	0.50ms
P01	14	Torque feedforward control selection	Torque feedforward control selection	1	0
P01	15	Torque feedforward gain	Torque feedforward gain	0.1%	0.0%
P01	16	Torque feedforward filtering time	Torque feedforward filtering time	0.01ms	0.00ms

The torque feedforward can use the analog input external feedforward, which can be used in the case of the upper device calculating the torque feedforward. In this case, it is necessary to set the torque feedforward selection (P01.14) to 2 and specify the input channel of TFFD in the analog input-related settings, and the correspondence between instruction and voltage.

3.4.6 Mechanical resonance suppression

The mechanical system has a certain resonance frequency, when the servo gain is increased, it may resonate near the mechanical resonance frequency, resulting in the gain not being able to continue to increase. There are two ways to suppress mechanical resonance:

1. Torque instruction filter (P01.04, P01.09)

The torque instruction filter is a digital low-pass filter that suppresses mechanical resonance by setting the filter time constant to attenuate the amplitude of the frequency components of the torque instruction near and above the cut-off frequency.

Filter cut-off frequency fc (Hz) = $1000 / [2\pi \times torque instruction filter time constant (ms)].$

2. Notch filter

The torque instruction filters are digital band-reject filters. The X5E servo drive has a total of 4 sets of series-connected notch filters to choose from. The 1s and 2nd notch filters are manual settings and the 3rd and 4th notch filters are adaptive filters.

◆ Notch filter

When the adaptive filter does not enable adaptive parameter settings (P02.02 is not set to 1,2), all 4 notch filters can be manually adjusted. In this case, the resonance frequency detection module can still be activated by setting the adaptive filter mode (P02.02) to 3 to give servo enable and control instructions. Check the display parameters P02.31~P02.36 to get the mechanical resonance data and use it as a reference to set the filter manually. If available, the resonance data can also be obtained by adding a vibration tester to the mechanical actuator to test the modal state of the mechanical system.

Functio	on code	Name	Setting range	The smallest unit	Default setting
P02	04	The 1st notch filter frequency (manual)	50 ~ 5000Hz	1Hz	5000Hz
P02	05	The 1st notch filter width	0 ~ 20	1	2
P02	06	The 1st notch filter depth	0 ~ 99	1	0
P02	07	The 2nd notch filter frequency (manual)	50 ~ 5000Hz	1Hz	5000Hz
P02	08	The 2nd notch filter width	0 ~ 20	1	2
P02	09	The 2nd notch filter depth	0 ~ 99	1	0
P02	10	The 3rd notch filter frequency	50 ~ 5000Hz	1Hz	5000Hz
P02	11	The 3rd notch filter width	0 ~ 20	1	2
P02	12	The 3rd notch depth	0 ~ 99	1	0
P02	13	The 4th notch filter frequency	50 ~ 5000Hz	1Hz	5000Hz
P02	14	The 4th notch filter width	0 ~ 20	1	2
P02	15	The 4th notch filter depth	0 ~ 99	1	0

The notch filter frequency, denoted as f0, represents the center frequency of the notch filter. Meanwhile, the notch filter width is determined by the bandwidth coefficient of the stopband, which can be calculated as kW = (f2 - f1) / f0. Here, f2 and f1 refer to the upper and lower frequencies that correspond to an attenuation of -3dB in the amplitude-frequency response (AFR) characteristic, respectively. Additionally, the notch filter depth, represented by the notch filter attenuation depth coefficient, can be calculated as the amplitude ratio of the output to the input at the notch center frequency point, denoted as Kd = A / A0.

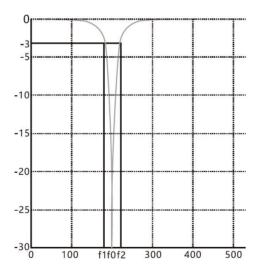


Figure 3.6 Notch filter amplitude-frequency characteristics

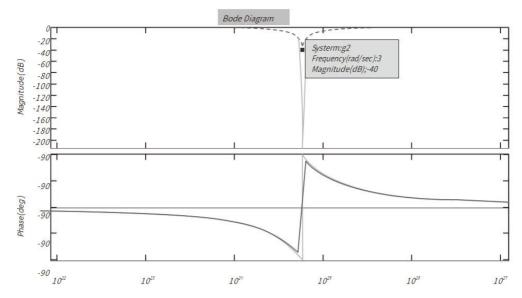


Figure 3.7 The frequency domain response curve when the notch filter depth is set to 1 and 0, respectively

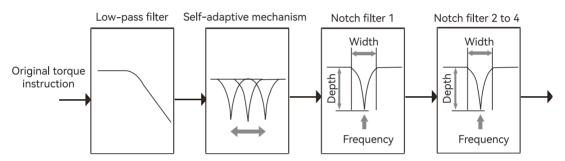


Figure 3.8 The role of the notch filter in servo control

3.4.7 Low-frequency vibration suppression

Overview

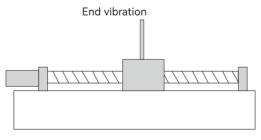


Figure 3.9

If the mechanical load at the end is long, vibration is likely to occur when the positioning stops, which can affect the positioning effect. This type of vibration typically has a lower frequency than the mechanical resonance frequency, so it is referred to as low-frequency vibration. The function of low-frequency vibration suppression can effectively reduce the vibration amplitude and positioning time.

◆ Procedure:

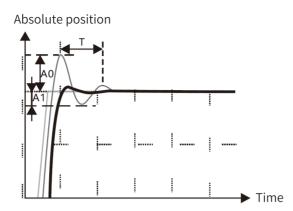


Figure 3.10 Low-frequency vibration waveforms under positioning control

In practical applications, it is possible to encounter a situation where there is a long end mechanism on the actuating part and there is an obvious oscillation when the position instruction stops, which is reflected in the position control waveform with periodic vibration in the position deviation (or absolute position feedback), as shown in Figure 3.10. In this case, users can follow the steps shown in Figure 3.11 to observe the waveform of sampling absolute position or position deviation triggered when the speed of position instruction is changed from non-zero to zero through the background software, and calculate the low-frequency vibration frequency and attenuation coefficient (attenuation coefficient = A1/A0), and correctly set to the 1st damping parameter (P02.20, P02.21). After completing the above operation, observe the waveform again, if there is still periodic vibration, continue to set the 2nd damping parameter according to the method shown in Figure 3.11. After the low-frequency suppression works, the positioning response waveform will be greatly improved, and the positioning tuning time will be shortened obviously, as shown by the thick line in Figure 3.10.

Function code Name		Name	Setting range	The smallest unit	Default setting
P02	20	The 1st damping frequency	10.0Hz~100.0Hz	0.1Hz	0.0Hz
P02	21	The 1st damping filter setting	0~1.0	0.1	0
P02	22	The 2nd damping frequency	10.0Hz~100.0Hz	0.1Hz	0.0Hz
P02	23	The 2nd damping filter setting	0~1.0	0.1	0

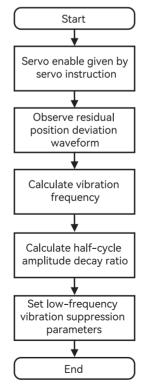


Figure 3.11 Low frequency suppression function operation flowchart

3.5 Inertia identification and initial angle identification

(1) Before entering the identification interface

Before identifying the inertia offline, please enter P20.00 and JOG to confirm the motor can run normally. The operation interface of inertia and initial angle identification is located in P20.03, press the key to find P20.03, and the display will be as follows.

The panel displays

If the last digit is blinking, it means it can be modified. Changing to 1 means forward inertia identification will be performed; changing to 2 means reverse inertia identification will be performed; changing to 5 means encoder initial angle identification will be performed; changing to other values means undefined.

(2) After entering the identification page

After entering the identification page, if the parameter value displayed in the first row is changed to 1 or 2, and the SET key is pressed, the inertia identification will be activated and the display will be as follows.

The panel displays , which indicates the value of the current inertia value (P00.04).

(3) After the identification is completed

After the identification is completed, press and hold the SET key (for more than two seconds) to store the newly identified inertia value to the E2PROM. In fact, the newly identified inertia value is recorded to the P00.04, and then the P00.04 is stored in the E2PROM.

After entering the identification interface, if the parameter value displayed in the first row is modified to 5 and the SET key is pressed, the initial angle identification of the encoder is activated and the first row displays the value of the current electrical angle (P21.09).

After the initial angle identification is completed, there is no need to store it, and long pressing of the SET key (holding down the SET key for more than two seconds) has no effect. Press the MODE key to exit the identification process.

Chapter 4 CANopen communication overview

4.1	CA	CANopen protocol introduction72							
4.2	Ob	ject dictionary	72						
4.3	No	de identifier (Node_ID)	72						
4.4	Co	mmunication object identifier (COB-ID)	73						
4.5	Ne	twork management system NMT	74						
	4.5.1	NMT state diagram	74						
	4.5.2	Network management system error control	75						
4.6	Ser	rvice process object (SDO)	76						
	4.6.1	Servo slave parameter writing	76						
	4.6.2	Servo slave parameter reading	78						
4.7	Pro	ocess data object (PDO)	80						
	4.7.1	PDO classification	80						
	4.7.2	Communication parameter	81						
	4.7.3	Mapping parameters	82						
4.8	Em	nergency object (EMCY)	82						
49	FD	S file	83						

4.1 CANopen protocol introduction

CANopen is a high-level communication protocol based on the Controller Area Network (CAN). It includes communication sub-protocols and device sub-protocols. CANopen is commonly used in embedded systems and is also a fieldbus often used in industrial control. The HCFA X5E CANopen servo drive strictly complies with CAN in Automation (CiA) draft standard 301 and CiA Draft Standard Proposal 402 for motion control.

4.2 Object dictionary

The CANopen Object Dictionary (OD) is a fundamental concept in the CANopen protocol. It is essentially an organized group of objects that describes all parameters of the corresponding CANopen node. This includes the position of the communication data, which is also included in its index. Each object is identified by a 16-bit index value, often referred to as the index, ranging from 0x0000 to 0xFFFF. To accommodate large data, an 8-bit index value, known as a subindex, ranging from 0x00 to 0xFF is defined under certain indexes. The standard layout of the object dictionary is defined in Table 4-1.

Table 4-1 CANopen object dictionary index area

Index	Object
0000h	Not used
0001h	Static data type
0020h~003Fh	Composite data type
0040h~005Fh	Manufacturer-specified composite data type
0060h~025Fh	Device protocol specified data type
0260h~03FFh	Reserved
0400h~0FFFh	Reserved
1000h~1FFFh	Communication protocol area
2000h~5FFFh	Manufacturer-specific protocol area
6000h~67FFh	Standardized protocol area 1st logical device
6800h~6FFFh	Standardized protocol area 2st logical device
7000h~77FFh	Standardized protocol area 3st logic device
7800h~7FFFh	Standardized protocol area 4st logic device
8000h~87FFh	Standardized protocol area 5st logic device
8800h~8FFFh	Standardized protocol area 6st logic device
9000h~97FFh	Standardized protocol area 7st logic device
9800h~9FFFh	Standardized protocol area 8st logic device
A000h~AFFFh	Standard network variable area
B000h~BFFFh	Standard system variable area
C000h~FFFFh	Reserved

4.3 Node identifier (Node_ID)

Each device in the CANopen network, including the master and slave, is assigned a unique node ID. This ID must be manually set by the user in servo parameter P09.00 (2109-01h) using the servo operation panel or the upper device software Servo Studio. It's important to note that within the same network, no two devices can have the same node ID. The node ID range is from 1 to 127, and it's not necessary to start from 1 when setting the servo address.

4.4 Communication object identifier (COB-ID)

COB-ID is a unique method of the CANopen communication protocol. Its full name is Communication Object Identifier. COB-ID defines the transmission level for Process Data Object (PDO). This allows the controller and the servo to be configured in their respective software to use the same transmission level and content. By doing so, the data transmission becomes transparent. This means that both parties are aware of the content of the transmitted data, and there is no need to check whether the other party's data has been successfully transmitted during data transmission.

CANopen uses an 11-bit COB-ID to simplify configuration, prioritize communication objects, and distinguish between different communication objects. The COB-ID consists of a 7-bit Node_ID and a 4-bit function code. In case of data transmission conflicts, the CANbus arbitration mechanism ensures that the COB-ID with the smallest value continues to communicate without waiting or retransmitting, giving higher priority to smaller COB-ID values. These COB-IDs are only active once the NMT initialization state is complete and the system enters the configuration state. During broadcasting, the Node-ID is set to zero. A description of the COB-ID composition can be found in Table 4-2.

Table 4-2 Meaning of each bit of the 11-bit COB-ID of the message

					COB-ID					
10	9	8	7	6	5	4	3	2	1	0
	Function code Node ID(1~127)									

The CANopen object COB-IDs supported by the servo drive are shown in Table 4-3:

Table 4-3 Supported COB-ID

СОВ	Function code	COB-ID
Emergency message object EMCY	0001b	80h+Node_ID
TPDO1	0011b	180h+ Node_ID
RPDO1	0100b	200h+ Node_ID
TPDO2	0101b	280h+ Node_ID
RPDO2	0110b	300h+ Node_ID
TPDO3	0111b	380h+ Node_ID
RPDO3	1000b	400h+ Node_ID
TPDO4	1001b	480h+ Node_ID
RPD04	1010b	500h+ Node_ID
T_SDO	1011b	580h+ Node_ID
R_SDO	1100b	600h+ Node_ID
NMT network management	1110b	700h+ Node_ID

4.5 Network management system NMT

NMT (Network management) defines the state change commands of the internal state machine (e.g., device starting, device stopping), and detects the bootup and failure of the remote device.

4.5.1 NMT state diagram

The state diagram is shown in Figure 4-4 and the NMT state migration process is shown in Table 4-5.

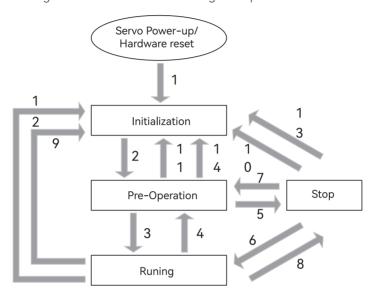


Figure 4-4 NMT State and migration diagram

Table 4-5 NMT State migration process description

1	Power-on or hardware reset automatically enters the NMT initialization state
2	NMT initialization is completed and enters the pre-operation state
3	Pre-operation is completed, the remote node is started and enters the running state
4, 7	Run/Stop state to pre-operation state
5, 8	Pre-operation state/Run state to stop state
6	Stop state to run state, enable remote node
9, 10, 11	Reset remote node
12, 13, 14	Reset remote node communication

NMT state description:

Initialization: The first NMT sub-state after CANopen power-up or hardware reset. The reset application sub-state is entered automatically after performing basic CANopen device initialization.

Pre-operation: In the configuration state, the SDO communication is allowed and PDO communication is not allowed. This state is typically used to configure the parameters and mapping objects of the PDO. The CANopen device can transition from this state to the operational state either by the NMT starting the service of the remote node or by local control.

This state allows all communication services. Transmission of PDOs, access to data dictionaries via SDOs, fails if there is an implementation problem or if the application state machine restricts access to the relevant object dictionary (e.g., an object may not be allowed to be modified during the execution of the application).

NMT Stop state: Switch the CANopen device into the NMT stop state to terminate all communication services (except node protection and heartbeat, if already activated). In addition, this state can be used to implement application-specific behavior. Table 4-6 lists the relationship between the NMT state and the communication objects.

Table 4-6 Relationship of NMT state to communication objects

(Note: O means supported, X means unsupported)

	Pre-operation	Run	Stop
Process data object (PDO)	X	0	X
Service data object (SDO)	0	0	X
Synchronization object (SYNC)	0	0	X
Emergency message (EMCY)	0	0	X
Node control and error control	0	0	0

The COB-ID of the NMT message is fixed to "0x000".

The data area consists of two bytes: The first byte is the command word indicating the control role of the frame, the second byte is the CANopen node address. "0" is a broadcast message, valid for all slave devices in the network.

Common NMT message commands are shown in Table 4-7.

Table 4-7 NMT command

Command word	Description
Ox 01	Start remote node command
Ox 02	Stop remote node command
Ox 80	Enter pre-operation state command
Ox 81	Reset node command
Ox 82	Reset communication command

4.5.2 Network management system error control

NMT error control is mainly used to detect whether the devices in the network are online and the state of the devices, node/lifetime protection, and heartbeat protection (in practice, either one or neither of the two can be selected).

◆ Heartbeat protection

Heartbeat protocol is used to monitor the nodes in the network and confirm their proper functioning. The heartbeat model uses a producer-consumer model and consists of both master and slave heartbeats.

Slave monitors master:

If the master sends a heartbeat telegram according to its producer time and the slave does not receive a heartbeat telegram within the 1016h sub-index time when monitoring the master, the master is considered to be dropped out. 1016h a certain sub-index time > the master's producer time, or else it is easy to misreport that the slave considers the master has dropped out.

Master monitors slave

The slave sends heartbeat telegrams every 1017h to monitor the master (or other slaves) of the slave, and if it does not receive a heartbeat telegram within the consumer time, it is assumed that the slave has dropped out. 1017h < the consumer time of the master (or other slaves) that monitors the slave, or the slave will misreport that that the slave has dropped out.

The heartbeat message format is shown in Table 4-8 :

Table 4-8 Heartbeat message frame format

COB-ID	data
0x700+Node number	Status (0: start, 4: stop, 5: run, 127: pre-operation)

◆ Node/Lifetime protection

Node protection is where the NMT master periodically queries the status of the NMT slaves via remote frames. Lifetime protection is where the slave indirectly monitors the master's state through the interval of remote frames it receives to monitor the slaves. Node protection follows a master-slave model where each remote frame must be responded. The master sends messages to the slave periodically with a "monitoring time" and the slave responds when it receives them. If the master does not receive a response from the slave after the "monitoring time*lifetime factor" time is exceeded, then the master determines that the slave is in error.

Objects associated with node/lifetime protection include the monitoring time 100Ch and the lifetime factor 100Dh. The value of 100Ch is the normal condition node protection remote frame interval in ms, and the product of 100Ch and 100Dh determines the latest time for host queries. Lifetime protection is activated when the node 100Ch and 100Dh are both non-zero and a node protection request frame is received. The master sends a node protection remote frame every 100Ch time and the slave must response, otherwise the slave is considered to be dropped out. If the slave does not receive a node protection remote frame within 100Ch×100Dh time, the master is considered to be dropped out.

Master request message format - (0x700 + node number) (no data in this message)

Slave response message format - (0x700 + node number) + status:

The status data section includes a trigger bit (bit 7), which must be set alternately to "0" or "1" for each node protection response. The trigger bit is set to "0" at the first node protection request. Bits 0 to 6 indicate the node status; 0: initialization, 1: Disconnected, 2: Connected, 3: Operation, 4: Stopped, 5: Running, 127: Pre-operation.

Monitoring time 100C is not recommended to be less than 10ms and the lifetime factor must be not less than 2 and 100Ch \times 100D \leq 6000.

4.6 Service process object (SDO)

The SDO is primarily used for transmitting lower-priority objects between devices and for configuring and managing slave devices. It allows for modifying the PID parameters of the current loop, speed loop, position loop, PDO configuration parameters, and similar tasks. This type of data transmission is similar to MODBUS, where the master sends a request and the slave responds with the data. It's important to note that this type of communication is suitable for parameter setting, but not for transmitting data with high real-time requirements.

The communication mode of SDO is divided into upload and download. The upper device can read and write the object dictionary inside the servo according to the special SDO read/write instruction. In the CANopen protocol, the content of the object dictionary can be modified by SDO, and accelerated transmission can be used for object data that are not higher than 4 bytes, and block or segmented transmission can be used for data that are higher than 4 bytes. The Servo drive only supports accelerated transmission and segmented transmission.

4.6.1 Servo slave parameter writing

For servo slave parameter writing, the request message format is shown in Table 4-9, where byte 0 is the command code.

Table 4-9 Request message format for SDO writing parameters

COB-ID		DATA										
COB-ID	0	1 2		3	4 5		6	7				
	23h					Data (4	4 bytes)					
(00h No do 1D	27h	Indexes		Subindex	Data (3 bytes)			/				
600h+Node-ID	2Bh				Data (2	2 bytes)	/	/				
	2Fh				Data (1 byte)	/	/	/				

If the SDO writing request is successfully completed, the response message is shown in Table 4–10, at which time the command code is 60h:

Table 4-10 Response message format for a successful SDO writing

COB-ID		DATA									
	0	1	2	3	4	5	6	7			
580h+Node-ID	60h	Inde	exes	Subindex	00						

If the SDO writing request fails, the command code is 80h at this time, and data bytes 4~7 indicate the corresponding abort code, and the response message is shown in Table 4-11:

Table 4-11 Response message format for an unsuccessful SDO writing

COB-ID		DATA									
COB-ID	0	1	2	3	4	5	6	7			
580h+Node-ID	80h	Inde	exes	Subindex	Abort code						

The following examples illustrate SDO writing, the Node-ID in the example is 5. The three examples show the request message and response message formats for SDO writing 8-bit, 16-bit, and 32-bit data, respectively, and the data in the examples is in hexadecimal.

(1) The SDO sets the control mode (indexed in the dictionary as 606000h) to the origin mode (code 6). The data type of object 606000h is INTEGER8, so only byte 4 of data bytes 4 to 7 is valid. The request message is shown in Table 4-12:

Table 4-12 Example of request message for SDO 8-bit data writing

COB-ID	0	1	2	3	4	5	6	7
605	2F	60	60	00	06	00	00	00

At this point, if the writing is successful, the response message is shown in Table 4-13:

Table 4-13 Example of response message for a successful SDO 8-bit data writing

COB-ID	0	1	2	3	4	5	6	7
585	60	60	60	00	00	00	00	00

If the writing fails, at this time, data bytes 4~7 show the error code, then the response message is shown in Table 4-14:

Table 4-14 Example of response message for an unsuccessful SDO 8-bit data writing

COB-ID	0	1	2	3	4	5	6	7
585	80	60	60	00	XX	XX	XX	XX

(2) The SDO sets the value of the forward torque limit (indexed in the dictionary as 60E000h) to 1500. The data type of object 60E000h is UNSIGNED INTEGER16, so only bytes 4~5 of data bytes 4~7 are valid data. The request message is shown in Table 4-15:

Table 4-15 Example of request message for SDO 16-bit data writing

COB-ID	0	1	2	3	4	5	6	7
605	2B	E0	60	00	DC	05	00	00

At this point, if the writing is successful, the response message is shown in Table 4-16:

Table 4-16 Example of response message for a successful SDO 16-bit data writing

COB-ID	0	1	2	3	4	5	6	7
585	60	E0	60	00	00	00	00	00

If the writing fails, then data bytes 4~7 show the error code. If the error code is 06070010h, the response message is shown in Table 4-17:

Table 4-17 Example of response message for an unsuccessful SDO 16-bit data writing

COB-ID	0	1	2	3	4	5	6	7
585	80	E0	60	00	10	00	07	06

(3) SDO sets the very small value of the soft limit (indexed in the dictionary as 607D01h) to -20000000 (FECED300h in hexadecimal). The data type of object 607D01h is INTEGER32, so data bytes 4 to 7 are all valid data. The request message is shown in Table 4-18:

Table 4-18 Example of request message for SDO 32-bit data writing

COB-ID	0	1	2	3	4	5	6	7
605	23	7D	60	01	00	D3	CE	FE

At this point, if the writing is successful, the response message is shown in Table 4-19:

Table 4-19 Example of response message for a successful SDO 32-bit data writing

COB-ID	0	1	2	3	4	5	6	7
585	60	7D	60	01	00	00	00	00

If the writing fails, then data bytes 4~7 show the error code. If the error code is 06070010h, the response message is shown in Table 4-20:

Table 4-20 Example of response message for an unsuccessful SDO 32-bit data writing

COB-ID	0	1	2	3	4	5	6	7
585	80	7D	60	01	10	00	07	06

4.6.2 Servo slave parameter reading

For servo slave parameter reading, the request message format is shown in Table 4-21, where byte 0 is the command code, and the command code is 40h no matter how many bit widths of data are read.

Table 4-21 Request message format for SDO parameter reading

COB-ID	DATA										
	0	1	2	3	4	5	6	7			
600h+Node-ID	40h	Indexes		Subindex	00						

If the SDO reading request is successfully completed, the response message is shown in Table 4-22:

Table 4-22 Response message format for a successful SDO reading

COR ID					DATA			
COB-ID	0	1 2		3	4	5	6	7
	43h					Data (4	bytes)	
FOOL IN L. ID	47h	Indexes		Culainadau		Data (3 bytes)		
580h+Node-ID	4Bh			Subindex	Data (2	2 bytes)	/	/
	4Fh				Data (1 byte)	/	/	/

If the SDO writing request fails, the command code is 80h at this time, and data bytes 4~7 indicate the corresponding abort code, and the response message is shown in Table 4-23:

Table 4-23 Response message format for an unsuccessful SDO reading

COB-ID	DATA									
	0	1	2	3	4	5	6	7		
580h+Node-ID	80h	Indexes		Subindex	Abort code			_		

The following examples illustrate SDO reading, the Node-ID in the example is 2. The three examples show the request message and response message formats for SDO reading 8-bit, 16-bit, and 32-bit data, respectively, and the data in the examples is in hexadecimal.

(1) The SDO reads the interpolation cycle time unit (indexed in the dictionary as 60C201h) and request message is shown

in Table 4-24:

Table 4-24 Example 1 of request message for SDO 8-bit data reading

COB-ID	0	1	2	3	4	5	6	7
602	40	C2	60	01	00	00	00	00

The data type of object 60C201h is UNSIGNED INTEGER8, so only byte 4 of data byte 4~7 is valid data. If the read is successful and the read value is 3, the response message is shown in Table 4-25:

Table 4-25 Example of request message for a successful SDO 8-bit data reading

COB-ID	0	1	2	3	4	5	6	7
582	4F	C2	60	01	03	00	00	00

If the writing fails, at this time, data bytes 4~7 show the error code, then the response message is shown in Table 4-26:

Table 4-26 Example of response message for an unsuccessful SDO 8-bit data reading

COB-ID	0	1	2	3	4	5	6	7
582	80	C2	60	01	XX	XX	XX	XX

(2) SDO torque instruction reading (indexed in the dictionary as 607400h), The request message is shown in Table 4-27:

Table 4-27 Example 2 of request message for SDO 8-bit data reading

COB-ID	0	1	2	3	4	5	6	7
602	40	74	60	00	00	00	00	00

The data type of object 607400h is INTEGER16, so only bytes 4~5 of data bytes 4~7 are valid data. At this time, if the reading is successful, the read value is 750 (2EEh in hexadecimal), then the response message is shown in Table 4–28:

Table 4-28 Example of response message for a successful SDO 16-bit data reading

COR-ID	0	1	2	2	,	E	4	7
COB-ID	U	ı	Z	3	4	3	0	/
582	4B	74	60	00	EE	02	00	00

If the reading fails, then data bytes 4~7 show the error code. If the error code is 05040000h (which indicates reading time-out), the response message is shown in Table 4-29:

Table 4-29 Example of response message for an unsuccessful SDO 16-bit data reading

COB-ID	0	1	2	3	4	5	6	7
582	80	74	60	00	00	00	04	05

(3) The SDO reads the current constant denominator (indexed in the dictionary as 609202h) and the request message is shown in Table 4-30:

Table 4-30 Example 3 of request message for SDO 32-bit data reading

COB-ID	0	1	2	3	4	5	6	7
602	40	92	60	02	00	00	00	00

The data type of object 609202h is UNSIGNED INTEGER32, so data bytes 4~7 are valid data. At this time, if the reading is successful, the read value is 120000 (1D4C0h in hexadecimal), then the response message is shown in Table 4-31:

Table 4-31 Example of response message for a successful SDO 32-bit data reading

COB-ID	0	1	2	3	4	5	6	7
582	43	92	60	02	C0	D4	01	00

If the read fails, data bytes 4~7 show the error code at this time. If the error code is 05040000h (which indicates reading timeout), the response message is shown in Table 4-32:

Table 4-32 Example of response message for an unsuccessful SDO 32-bit data reading

COB-ID	0	1	2	3	4	5	6	7
582	80	92	60	02	00	00	04	05

4.7 Process data object (PDO)

PDO can transmit 8 bytes of data at a time without the need to preset other protocols. It is mainly used for the transmission of data that requires high-frequency exchanges. The transmission method of PDO transcends the existing data question-and-answer transmission mode and adopts a new data exchange mode. In this mode, both sides of the equipment define the data receiving and transmitting zones before transmission and send the relevant data directly to the other side's data receiving zone during data exchange. This mode eliminates the inquiry time of question-and-answer transmission, thus significantly improving the utilization rate of the bus.

4.7.1 PDO classification

In terms of writing and sending out information, PDO can be classified into RPDO (information written to the slave) and TPDO (information sent out from the slave).

The RPDO-related parameter contents are determined by the communication parameters (1400H~15FFH) and the RPDO mapping parameters (1600H~17FFH), and each group of communication parameters has a one-to-one correspondence with the mapping parameters. For example, 1400H and 1600H are the first group of RPOO parameter contents, and 1401H and 1601H are the second group of RPDO parameter contents.

The content of TPDO-related parameters is determined by the communication parameters (1800H~19FFH) and TPDO mapping parameters (1A00H~1BFFH). Each set of communication parameters has a one-to-one correspondence with the mapping parameters. For example, 1800H and 1A00H are the first group of TPOO parameter contents, and 1801H and 1A01H are the second group of TPDO parameter contents.

The PDO object list correspondence is shown in Table 4-33.

(Only 4 groups of RPDOs and 4 groups of TPDOs are listed in the table; COB-IDs can be modified according to actual use)

Table 4-33 PDO object list

Name	Sequence	Communication parameter	Mapping parameter	COB-ID (default)
	1	1400h	1600h	200+Node-ID
RPDO	2	1401h	1601h	300+Node-ID
RPDO	3	1402h	1602h	400+Node-ID
	4	1403h	1603h	500+Node-ID
TPDO	1	1800h	1A00h	180+Node-ID
TPDO	2	1801h	1A01h	280+Node-ID
TPDO	3	1802h	1A02h	380+Node-ID
IPDO	4	1803h	1A03h	480+Node-ID

4.7.2 Communication parameter

In CANopen protocol CIA301, the communication parameter groups 1400h~15FFh and 1800h~19FFh definitions are consistent. The following is an example of the definition content of 1800h, as shown in Table 4–34:

Table 4-34 TPDO configuration content description

Index	Subindex	Name	Value	
	00h	Number of subindexes	02h~05h	
	01h	COB-ID used by TPDO	Refer to section 4.4	
1800h	02h	Transmission type	0~255	
	03h	Inhibit time	Unit: 100us	
	05h	Event timer	Unit: 1ms	

Number of subindexes: Define a valid object entry record with a value of at least 02h, which should be set to 03h if inhibit time is supported, or 05h if event timers are supported.

COB-ID used by TPDO: Refer to section 4.4

Inhibit time: The value is in units of 100us and the value 0 means disabled. This parameter defines the minimum interval time between two consecutive PDO transmissions to avoid the problem that the data volume of high priority information is too large and always occupies the bus, while other data with lower priority are unable to compete for the bus. After setting the value, the same TPDO transmission interval minus must not be less than the time corresponding to this parameter.

Event timer: Define an event timer for TPDO for asynchronous transmission (type 254 or 255). The event timer can be thought of as a trigger event that triggers the corresponding TPDO transfer. If other events, such as data changes, occur during timer running period, the TPDO is also triggered and the event counter is reset immediately.

Transmission type:

Two transmission types for PDO: synchronous and asynchronous:

Synchronous transmission (transmission type: 0-240)

Synchronous message triggered transmission: In this transmission mode, the controller must have the ability to send a synchronous message, which the servo sends after it receives the synchronous message. Synchronous transmission consists of 2 types: non-cyclic and cyclic.

Non-cyclic (transmission type: 0): Transmission is pre-triggered by a remote frame or by an object-specific event specified in the device sub-protocol. In this case, the servo drive sends the data in the synchronization message PDO once every time it receives a synchronization message.

Cyclic (transmission type: 1-240): The transmission is triggered after every 1 to 240 SYNC messages. The servo drive in this mode sends the data in the PDO after every n SYNC messages received.

Asynchronous transmission (transmission type: 254/255)

Slave messages are sent after the data is changed, regardless of whether the master asks for it or not, and the time interval between two sends of the same message can be defined to avoid high-priority messages from occupying the bus all the time (the lower the value of COB-ID, the higher the priority).

4.7.3 Mapping parameters

In CANopen protocol CIA301, the mapping group 1600h~17FFh, 1A00h~1BFFh definitions are all consistent. The following is an example of 1A00h to illustrate the content of the definition, as shown in Table 4-35:

(Note that the total length of each group of PDO mapping objects cannot exceed 8 bytes)

Table 4-35 TPDO mapping object

Index	Sub-index	Name
	00h	Number of TPDO mapping application objects
	01h	The 1st mapping application object
1 4 0 0 1	02h	The 2nd mapping application object
1A00h	3h	The 3rd mapping application object
	40h	The 3rd mapping application object

Number of RPDO mapping application objects:

Number of TPDO parameters to be configured, range 0 to 8

The 1st mapping application object: user-defined, mostly parameters from the object dictionary in chapter 9 in this manual.

The 2nd mapping application object: user-defined, mostly parameters from the object dictionary in chapter 9 in this manual.

.

The nth mapping application object: user-defined, mostly parameters from the object dictionary in chapter 9 in this manual.

4.8 Emergency object (EMCY)

Emergency objects are triggered by internal errors of the CANopen device and operate on a producer-consumer basis. When a node experiences a failure and sends an emergency message, other nodes can decide whether to respond to or disregard the emergency message. Emergency objects are well-suited for interrupt-type error alerts. An "error event" will only trigger an emergency message once. If no new errors occur in the device, no additional emergency messages will be generated.

The contents and format of the emergency message are shown in Table 4-36:

Table 4-36 Emergency message format

COB-ID	0	1	2	3	4	5	6	7
80h+Node-ID	CiA protoco	l fault code	Error register	Factory-defin	ed fault code		Reserved (0)	

The fault code for the CiA protocol is displayed in Table 7-1, and the error register corresponds to object 1001h. All the manufacturer-defined fault codes are listed in the Table 6-1 and Table 6-2. The reserved byte for the emergency message is always 0. Additionally, after a fault occurs, the contents of object 603Fh represent the CiA protocol fault codes, and the contents of object 213Fh represent the manufacturer-defined fault codes.

For the CANopen bus, after a fault has occurred, the contents of object 603Fh are CiA protocol fault codes and the contents of object 213Fh are a factory-defined fault codes.

4.9 EDS file

EDS (Electronic Data Sheet) is a file or code that identifies a slave connected to a host device, like a PLC. The EDS file contains essential information about the slave, including the manufacturer, serial number, software version, supported baud rate types, mappable object dictionaries, and properties of each object dictionary. Before configuring the hardware, most PLCs require importing the slave's EDS file into the host configuration software.

HCFA X5 CANopen servo drive has a special EDS file, if there is a need, please consult the relevant personnel.

Chapter 5 Modes of operation

5.1 Se	rvo system configuration	85
5.2 Pro	ofile position mode (PP)	85
5.2.1	Controlword setting in the PP mode	86
5.2.2	Statusword setting in the PP mode	88
5.2.3	Object dictionary list in the PP mode	89
5.2.4	Example of using the PP mode	89
5.3 Pro	ofile velocity mode (PV)	90
5.3.1	Controlword setting in the PV mode	90
5.3.2	Statusword setting in the PV mode	91
5.3.3	Object dictionary list in the PV mode	92
5.3.4	Example of using the PV mode	92
5.4 Pro	ofile torque mode (PT)	93
5.4.1	Controlword setting in the PT mode	93
5.4.2	Statusword setting in the PT mode	94
5.4.3	Object dictionary list in the PT mode	95
5.4.4	Example of using the PT mode	95
5.5 Ho	oming mode (HM)	96
5.5.1	Controlword setting in the HM mode	96
5.5.2	Statusword setting in the HM mode	97
5.5.3	Object dictionary list in the HM mode	98
5.5.4	Example of using the HM mode	99
5.5.5	Homing mode introduction	99
5.6 Int	erpolation mode (IP)	129
5.6.1	Controlword setting in the IP mode	130
5.6.2	Statusword setting in the IP mode	130
5.6.3	Object dictionary list in the IP mode	131
5.6.4	Example of using the IP mode	132
5.7 Ele	ectronic gear ratio	132
5.8 Ins	struction unit	133

5.1 Servo system configuration

When using the X5EB servo drive, it is sometimes necessary to manually configure the servo drive parameters and set the control mode through the servo drive operation panel or the upper device software HCS Studio, as shown in Table 5-1 below.

Table 5-1 Pre-setting for using X5E servo drive

Address	Name	Parameter content	Default
		0: Position mode	
P00.01	Modes of operation	1: Speed mode	7
(2100-02h)	modes of operation	2: Torque mode	/
		7: CANopen mode	
P09.00	CANopen servo station number address	1~127	1
(2109-01h)	CANopen servo station number address	1~127	1
	CANopen communication baud rate	0 = 20k $1 = 50k$	
P09.13	(EtherCAT baud rate does not need to be set, fixed as	2 = 100k $3 = 125k$	5
(2109-Eh)	100M)	4 = 250k 5 = 500k	3
	10014)	6 = 800k 7 = 1000k	

5.2 Profile position mode (PP)

In the profile position mode, the drive controls the motor for both absolute and relative position positioning. The host device can set the target position, start speed, stop speed, and acceleration (deceleration) speed. When the PP mode is enabled, set object 6060H to 1.

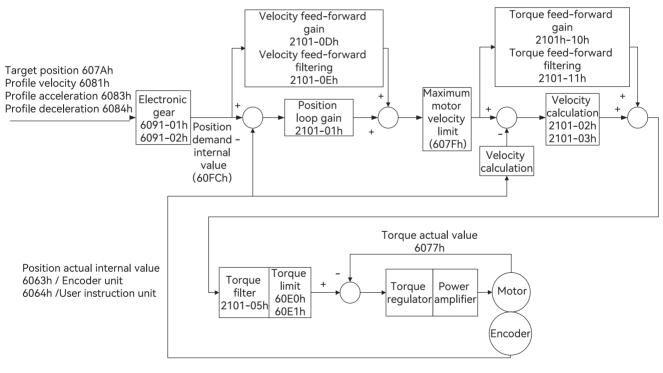


Figure 5-1 Control block diagram of the PP mode

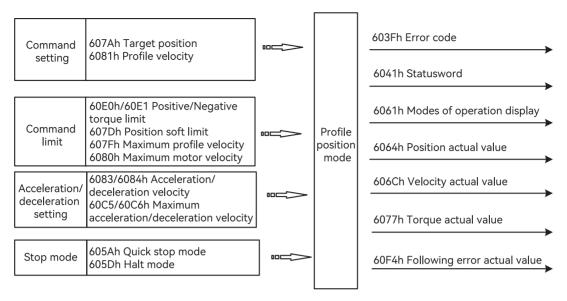
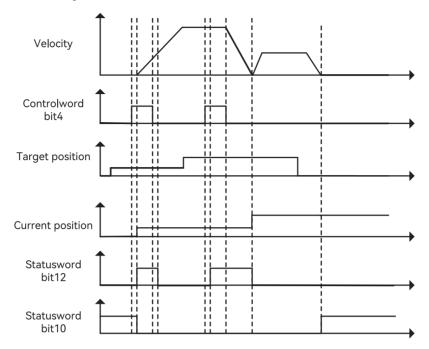


Figure 5-2 Input and output of the PP mode


5.2.1 Controlword setting in the PP mode

The meaning of each bit of controlword (6040h) in the PP mode is shown in Table 5-2 where the background is marked in dark color for the PP-specific control commands.

Table 5-2 Controlword description in the PP mode

Bit	Name	Description
0	Switch on	Servo enable must be set to 1
1	Enable voltage	Servo enable must be set to 1
2	Quiek eten	Servo enable must be set to 1
Ζ	Quick stop	Set to 0 to enable quick stop
3	Operation enable	Servo enable must be set to 1
		In $0 \rightarrow 1$ change, load the next set of position instruction parameters (including target
4	Update position instruction	position or position increment, start speed, running speed, acceleration and decelera-
		tion speed)
		0: Wait for the current position instruction to finish execution before executing a new
5	Immediate update	instruction
		1: Abort the instruction being executed and execute the latest position instruction
6	Position instruction type	0: Absolute instruction
0	Position instruction type	1: Relative position instruction
		In $0 \rightarrow 1$ change, one fault reset is executed; if multiple resets are required, multiple
7	Fault reset	$0 \rightarrow$ 1 changes are generated. When this position is equal to 1, other control instruc-
		tions are invalid
8	Pause	0: Invalid
0	Pause	1: Valid. Stop executing the instruction when it is valid
9	PP mode reserved	Unavailable
10	Reserved	Unavailable
11~15	Manufacturer customization	Unavailable

When 6040h Controlword bit5 is 0, if the positioning data in the action is changed, it will wait until the current position instruction is executed before executing the new instruction as follows:

When 6040h Controlword bit5 is 1, if the positioning data in the action is changed, the instruction being executed is aborted and the latest instruction is executed immediately as follows:

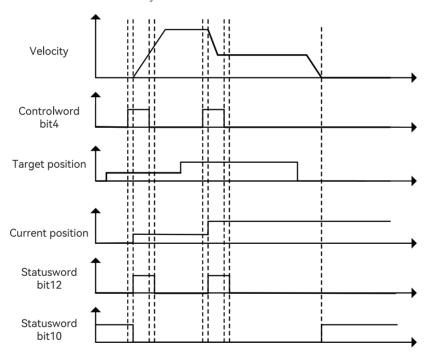


Figure 5-3 Instruction and status update illustration in PP mode

5.2.2 Statusword setting in the PP mode

The meaning of each bit of Statusword (6041h) in the PP mode is shown in Table 5-3 where the background is marked in dark color for the PP-specific control commands.

Table 5-3 Statusword description in the PP mode

Bit	Name	Description
		0: Invalid
0	Ready to switch on	1: Valid
		When valid, it means that the servo can be enabled.
		0: Invalid
1	Switch on	1: Valid
		When valid, it means that the servo can be enabled.
		0: Invalid
2	Operation enabled	1: Valid
		When valid, it means the servo is enabled.
3	Servo fault	0: Not faulty
	Servo fault	1: Faulty
		0: Invalid
4	Voltage enabled	1: Valid
		When valid, it means that the servo can be enabled.
5	Quick stop	0: Quick stop is valid
	Quick stop	1: Quick stop is invalid
		0: Invalid
6	Switch on disabled	1: Valid
		When valid, it means that the servo cannot be enabled.
7	Alarm	0: No alarm
	, dom	1: Alarm
8	Manufacturer customization	Unavailable
		0: Invalid
9	Remote control	1: Valid
		When valid, it means that the controlword is in effect.
		60400010h bit 8 (pause)=0,
		0: Position is not reached
10	Position arrival	1: Position is reached
		60400010h bit 8 (pause) = 1
		0: Deceleration in progress
		1: Speed=0
11	Internal soft limit status	0: Soft limit is not reached
		1: Soft limit is reached
12	New position instruction reception	0: Position instruction can be updated
	status	1: Position instructions cannot be updated
13	Position deviation error	0: Position deviation value is within the set range (6065h)
	1: Position deviation value exceeds the set range (6065h)	
14	Manufacturer customization	Unavailable
		0: Invalid
		1: Homing completed
15	Homing completed	For absolute value system, after setting the second digit from the right of the hexa-
		decimal value of P09.14 to 2, the value of bit15 will be stored after a successful homing
		(power-down holding), and the stored value can be cleared by setting P20.06 to 7.

5.2.3 Object dictionary list in the PP mode

A list of the dictionary objects involved in the PP mode is shown in Table 5-4.

Table 5-4 Object dictionary related to the PP mode

Index	Sub-index	Name	Access	Data type	Default
603Fh		Error code	ro	unsigned16	0
6040h		Controlword	rw	unsigned16	0
6041h		Statusword	ro	unsigned16	0
6060h		Modes of operation	rw	integer8	0
6061h		Modes of operation display	ro	integer8	0
6062h		Position demand value	ro	integer32	0
6063h		Position actual internal value	ro	integer32	0
6064h		Position actual value	ro	integer32	0
6065h		Following error window	rw	unsigned32	1000000
6067h		Position window	rw	unsigned32	100
6068h Position window time		Position window time	rw	unsigned16	1
606Bh Velocity demand value		Velocity demand value	ro	integer32	0
606Ch		Velocity actual value	ro	integer32	0
607Ah		Target position	rw	integer32	0
607Ch		Home offset	rw	integer32	0
607Dh	01h	Min. software position limit	rw	integer32	-2147483648
607DN	02h	Max. software position limit	rw	integer32	2147483647
607Eh		Polarity	rw	unsigned8	0
6081h		Profile velocity	rw	unsigned32	100
6083h		Profile acceleration	rw	unsigned32	100
6084h		Profile deceleration	rw	unsigned32	100
60F4h		Following error actual value	ro	integer32	0
60FCh Position demand internal value		ro	integer32	0	

5.2.4 Example of using the PP mode

The host device is connected to the servo drive. When running the host device, the startup and operation procedure of the PP mode is shown in the table below.

Table 5-5 The startup and operation procedure of the PP mode

Address	Name	Value setting (decimal value)
60600008h	Modes of operation	1
607A0020h	Position setting	User setting
60810020h	Speed setting	Default gear ratio 1:1, write 1310720 for 600rpm
	Enable	Any number $\rightarrow 6 \rightarrow 7 \rightarrow 15$
	Alexandensina	Any number → 128
60400010h	Alarm clearing	(valid at the rising edge, clear if possible)
Controlword	Absolute position setting (non-immediate update)	(valid at the rising edge, clear if possible)
Controlword	Absolute position setting (immediate update)	$6 \rightarrow 7 \rightarrow 47 \rightarrow 63$
	Relative position setting (non-immediate update)	$6 \rightarrow 7 \rightarrow 79 \rightarrow 95$
	Relative position setting (immediate update)	$6 \rightarrow 7 \rightarrow 111 \rightarrow 127$
60830020h	Profile acceleration	Default value 13107200 Instruction unit/s^2
60840020h	Profile deceleration	Default value 131072000 Instruction unit/s^2

5.3 Profile velocity mode (PV)

In the profile velocity mode, the host device can set the target speed and acceleration (deceleration) speed. When the PV mode is enabled, set the object 6060H to 3. See Figure 5-4 and Figure 5-5 for the control block diagram and input and output.

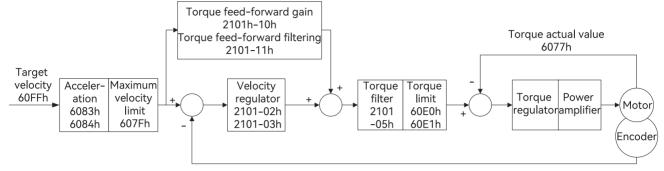


Figure 5-4 Control block diagram of the PV mode

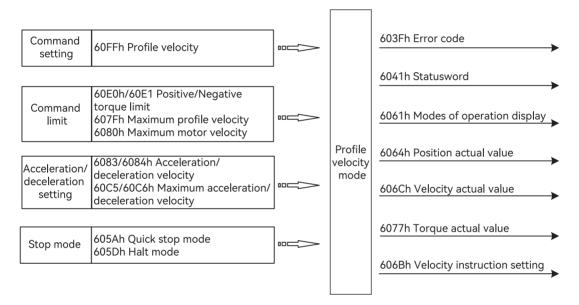


Figure 5-5 Input and output of the PV mode

5.3.1 Controlword setting in the PV mode

The meaning of each bit of controlword (6040h) in the PV mode is shown in Table 5-6 where the background is marked in dark color for the PV-specific control commands.

Table 5-6 Controlword description in the PV mode

Bit	Name	Description
0	Switch on	Servo enable must be set to 1
1	Enable voltage	Servo enable must be set to 1
2	Ovidentas	Servo enable must be set to 1
2	Quick stop	Set to 0 to enable quick stop
3	Operation enable	Servo enable must be set to 1
4 ~ 6	PV mode reserved	Unavailable
		In $0 \rightarrow 1$ change, one fault reset is executed; if multiple resets are required, multiple
7	Fault reset	$0 \rightarrow$ 1 changes are generated. When this position is equal to 1, other control instruc-
		tions are invalid

		0: Invalid
8	Pause	1: Valid
		Stop executing the instruction when it is valid.
9	PV mode reserved	Unavailable
10	Reserved	Unavailable
11~15	Manufacturer customization	Unavailable

5.3.2 Statusword setting in the PV mode

The meaning of each bit of statusword (6041h) in the PV mode is shown in Table 5-7 where the background is marked in dark color for the PV-specific control commands.

Table 5-7 Statusword description in the PV mode

Bit	Name	Description	
		0: Invalid	
0	Ready to switch on	1: Valid	
		When valid, it means that the servo can be enabled.	
1	Switched on	0: Invalid, 1: Valid.	
1	Switched on	When valid, it means that the servo can be enabled.	
		0: Invalid	
2	Operation enabled	1: Valid	
		When valid, it means that the servo is enabled.	
3	Servo fault	0: Not faulty	
	Servo fault	1: Faulty	
		0: Invalid	
4	Voltage enabled	1: Valid.	
		When valid, it means that the servo can be enabled.	
5	Quick stop	0: Quick stop is valid	
Э		1: Quick stop is invalid	
		0: Invalid	
6	Switch on disabled	1: Valid	
		When valid, it means that the servo cannot be enabled.	
7	Alarm	0: No alarm	
,	Aldilli	1: Alarm	
8	Manufacturer customization	Unavailable	
		0: Invalid	
9	Remote control	1: Valid	
		When valid, it means that the controlword is in effect.	
		60400010h bit 8 (pause)=0,	
		0: Not arrived 1: Arrived	
10	Speed arrival	60400010h bit 8 (pause)=1,	
		0: Decelerating	
		1: speed 0	
11	Internal coft limit status	0: Soft limit is not reached	
11	Internal soft limit status	1: Soft limit is reached	
12	Zero velocity status	0: Velocity is not equal to 0, 1: Velocity is equal to 0	
13	PV mode reserved	Unavailable	
14 ~ 15	Manufacturer customization	Unavailable	

5.3.3 Object dictionary list in the PV mode

A list of the dictionary objects involved in the PV mode is shown in Table 5-8.

Table 5-8 Object dictionary related to the PV mode

Index	Sub-index	Name	Access	Data type	Default
603Fh		Error code	ro	unsigned16	0
6040h		Controlword	rw	unsigned16	0
6041h		Statusword	ro	unsigned16	0
6060h		Modes of operation	rw	integer8	0
6061h		Modes of operation display	ro	integer8	0
6063h		Position actual internal value	ro	integer32	0
6064h		Position actual value	ro	integer32	0
606Bh		Velocity demand value	ro	integer32	0
606Ch		Velocity actual value	ro	integer32	0
606Dh		Velocity window	rw	unsigned16	100
606Eh		Velocity window time	rw	unsigned16	1
606Fh		Velocity threshold	rw	unsigned16	10
607Ch		Home offset	rw	integer32	0
	01h	Min. software position limit	rw	integer32	-2147483648
607Dh	02h	Max. software position limit	rw	integer32	2147483647
607Eh		Polarity	rw	unsigned8	0
6083h		Profile acceleration	rw	unsigned32	13107200
6084h		Profile deceleration	rw	unsigned32	13107200
(00/l-	01h	Velocity encoder factor: numerator	rw	unsigned32	1
6094h	02h	Velocity encoder factor: denominator	rw	unsigned32	1
60C5h		Max. acceleration	rw	unsigned32	100000000
60C6h		Max. deceleration	rw	unsigned32	100000000
60FFh		Target velocity	rw	integer32	0

5.3.4 Example of using the PV mode

1. Set servo drive parameters for running the host device, the startup and operation procedure of the PV mode is shown in the table below.

Table 5-9 The startup and operation procedure of the PV mode

Address	Name	Value setting (decimal value)
60600008h	Modes of operation	3
60FF0020h	Speed setting	Default gear ratio 1:1, write 1310720 for 600rpm
/0/000101-	Enable	Any number $\rightarrow 6 \rightarrow 7 \rightarrow 15$
60400010h Controlword	Alarm clearing	Any number \rightarrow 128 (valid at the rising edge, clear if possible)
Controlword	Motor rotation	After the speed instruction is set and enabled, the motor rotates.
60830020h	Profile acceleration	Default value 13107200 Instruction unit/s^2
60840020h	Profile deceleration	Default value 131072000 Instruction unit/s^2

5.4 Profile torque mode (PT)

In the profile torque mode, the host device can set the target torque and rate of change of torque instruction (torque slope). When the PT mode is enabled, set the object 6060H to 4. See Figure 5-6 and Figure 5-7 for the control block diagram and input and output.

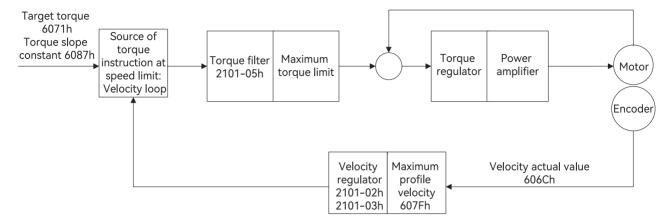


Figure 5-6 Control block diagram of the PT mode

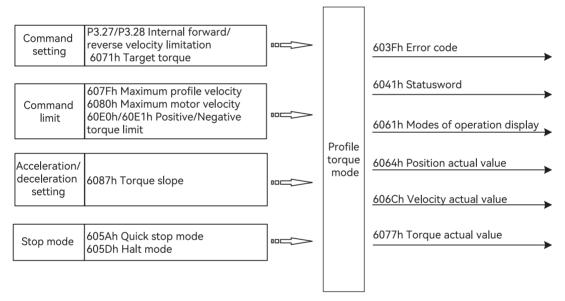


Figure 5-7 Input and output of the PT mode

5.4.1 Controlword setting in the PT mode

The meaning of each bit of controlword (6040h) in the PT mode is shown in Table 5-10 where the background is marked in dark color for the PT-specific control commands.

Table 5-10 Controlword description in the PT mode

Bit	Name	Description
0	Switch on	Servo enable must be set to 1
1	Enable voltage	Servo enable must be set to 1
2	Quick stop	Servo enable must be set to 1
		Set to 0 to enable quick stop
3	Operation enable	Servo enable must be set to 1
4 ~ 6	PT mode reserved	Unavailable

		In $0 \rightarrow 1$ change, one fault reset is executed; if multiple resets are required, multiple
7	Fault reset	$0 \rightarrow 1$ changes are generated. When this position is equal to 1, other control instruc-
		tions are invalid.
		0: Invalid
8	Pause	1: Valid
		Stop executing the instruction when it is valid.
9	PT mode reserved	Unavailable
10	Reserved	Unavailable
11~15	Manufacturer customization	Unavailable

5.4.2 Statusword setting in the PT mode

The meaning of each bit of Statusword (6041h) in the PT mode is shown in Table 5-11 where the background is marked in dark color for the PT-specific control commands.

Table 5-11 Statusword description in the PT mode

Bit	Name	Description
		0: Invalid
0	Ready to switch on	1: Valid
		When valid, it means that the servo can be enabled.
		0: Invalid
1	Switched on	1: Valid
		When valid, it means that the servo can be enabled.
		0: Invalid
2	Operation enabled	1: Valid
		When valid, it means that the servo is enabled.
3	Servo fault	0: Not faulty
	Servo fault	1: Faulty
	Voltage enabled	0: Invalid
4		1: Valid
		When valid, it means that the servo can be enabled.
5	Quick stop	0: Quick stop is valid
		1: Quick stop is invalid
		0: Invalid
6	Switch on disabled	1: Valid
		When valid, it means that the servo cannot be enabled.
7	Alarm	0: No alarm
	Alailli	1: Alarm
8	Manufacturer customization	Unavailable
		0: Invalid
9	Remote control	1: Valid
		When valid, it means that the controlword is in effect.
10	Position arrival	0: Torque is not reached
10	Position arrival	1: Torque is reached
11	0: Torque is not reached	0: Torque is not reached
12 , 13	PT mode reserved Unavailable	
14,15	Manufacturer customization	Unavailable

The 6041h statusword Bit10 torque arrival is related to the P04.55 and P04.56 parameter setting:

When the torque feedback (absolute value) \geq P04.55 + P04.56, the torque arrival signal is output and bit10 is set to 1.

5.4.3 Object dictionary list in the PT mode

A list of the dictionary objects involved in the PT mode is shown in Table 5-12.

Table 5-12 Object dictionary related to the PT mode

Index	Sub-index	Name	Access	Data type	Default
603Fh		Error code	ro	unsigned16	0
6040h		Controlword	rw	unsigned16	0
6041h		Statusword	ro	unsigned16	0
6060h		Modes of operation	rw	integer8	0
6061h		Modes of operation display	ro	integer8	0
606Ch		Velocity actual value	ro	integer32	0
6071h		Target torque	rw	integer16	1000
6074h		Torque demand value	ro	integer16	0
6077h		Torque actual value	ro	integer16	0
607Dh	01h	Min. software position limit	rw	integer32	-2147483648
	02h	Max. software position limit	rw	integer32	2147483647
6080h		Max. motor velocity	rw	unsigned32	5000
6087h		Torque slope	rw	unsigned32	0

5.4.4 Example of using the PT mode

1. Set servo drive parameters for running the host device, the startup and operation procedure of the PT mode is shown in the table below.

Table 5-13 The startup and operation procedure of the PT mode

Address	Name	Value setting (decimal value)
60600008h	Modes of operation	4
60800020h	Speed setting	User setting
60710010h	Profile torque setting	User setting
60400010h	Enable	Any number $\rightarrow 6 \rightarrow 7 \rightarrow 15$
Controlword	Alarm clearing	Any number \rightarrow 128 (valid at the rising edge)
Controlword	Motor rotation	Enable after giving instructions
60870020h	Torque slope	User setting (acceleration and deceleration in torque mode)

5.5 Homing mode (HM)

The CiA402 protocol defines 31 ways of homing according to the origin switch signal, limit switch signal and encoder Z signal. To enable this mode, set object 6060H to 6.

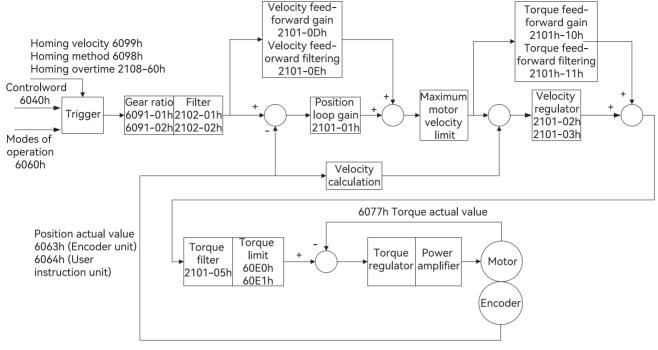


Figure 5-8 Homing mode control block diagram

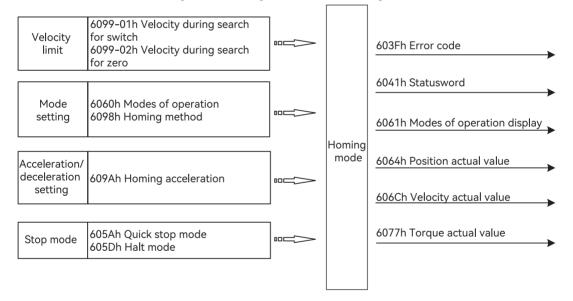


Figure 5-9 Input and output of homing mode

5.5.1 Controlword setting in the HM mode

The meaning of each bit of controlword (6040h) in the HM mode is shown in Table 5-14 where the background is marked in dark color for the HM-specific control commands.

Table 5-14 Controlword description in the HM mode

Bit	Name	Description
0	Switch on	Servo enable must be set to 1
1	Enable voltage	Servo enable must be set to 1

Quick ston	Servo enable must be set to 1
Quick stop	Set to 0 to enable quick stop
Operation enable	Servo enable must be set to 1
	0: Invalid
	1: Valid
noming enable	When valid, the homing process is started, and must be kept valid throughout the
	process. Switching to invalid will stop the homing process.
Homing mode reserved	Unavailable
Fault root	In $0 \rightarrow 1$ change, one fault reset is executed. When this position is equal to 1, other
	control instructions are invalid
	0: Invalid
Pause	1: Valid
	Stop executing the instruction when it is valid.
HM mode reserved	Unavailable
Reserved	Unavailable
Manufacturer customization	Unavailable
F F	Homing enable Homing mode reserved Fault reset Pause HM mode reserved Reserved

5.5.2 Statusword setting in the HM mode

The meaning of each bit of Statusword (6041h) in the HM mode is shown in Table 5-15 where the background is marked in dark color for the HM-specific control commands.

Table 5-15 Statusword description in the HM mode

Bit	Name	Description
		0: Invalid
0	Ready to switch on	1: Valid
		When valid, it means that the servo can be enabled.
		0: Invalid
1	Switched on	1: Valid
		When valid, it means that the servo can be enabled.
		0: Invalid
2	Operation enabled	1: Valid
		When valid, it means that the servo is enabled.
3	Servo fault	0: Not faulty
3	Servo fault	1: Faulty
		0: Invalid
4	Voltage enabled	1: Valid
		When valid, it means that the servo can be enabled.
Г	Outal at a a	0: Quick stop is valid
5	Quick stop	1: Quick stop is invalid
		0: Invalid
6	Switch on disabled	1: Valid
		When valid, it means that the servo cannot be enabled.
	Al	0: No alarm
7	Alarm	1: Alarm
8	Manufacturer customization	Unavailable
		0: Invalid
9	Remote control	1: Valid
		When valid, it means that the controlword is in effect.

		60400010h bit 8 (pause)=0,
		0: Position is not reached
10	Position arrival	1: Position is reached
10		60400010h bit 8 (pause)=1,
		0: Deceleration in progress
		1: Speed=0
11	Internal soft limit status	0: Soft limit is not reached
11		1: Soft limit is reached
12	Homing completion output	0: Homing is not completed
12		1: Homing is completed
13	Homing error	0: No error
13		1: Error
14	Manufacturer customization	Unavailable
		0: Invalid
		1: Homing completed
15	Homing completed	For absolute value system, after setting the second digit from the right of the hexa-
		decimal value of P09.14 to 2, the value of bit15 will be stored after a successful homing
		(power-down holding), and the stored value can be cleared by setting P20.06 to 7.

5.5.3 Object dictionary list in the HM mode

A list of the dictionary objects involved in the HM mode is shown in Table 5-16.

Table 5-16 Object dictionary related to the HM mode

Index	Sub-index	Name	Access	Data type	Default
603Fh		Error code	ro	unsigned16	0
6040h Controlword		rw	unsigned16	0	
6041h		Statusword	ro	unsigned16	0
6060h		Modes of operation	rw	integer8	0
6061h		Modes of operation display	ro	integer8	0
6062h		Position demand value	ro	integer32	0
6063h		Position actual internal value	ro	integer32	0
6064h		Position actual value	ro	integer32	0
6065h		Following error window	rw	unsigned32	100000000
6067h		Position window	rw	unsigned32	100
6068h		Position window time	rw	unsigned16	1
606Bh		Velocity demand value	ro	integer32	0
606Ch		Velocity actual value	ro	integer32	0
607Ch		Home offset	rw	integer32	0
607Dh	01h	Min. software position limit	rw	integer32	-2147483648
	02h	Max. software position limit	rw	integer32	2147483647
6098h		Homing mode	rw	integer8	0
6099h	01h	Velocity of searching for deceleration point signals in the HM mode	rw	unsigned32	218453
	02h	Velocity of searching for origin switch signals in the HM mode	rw	unsigned32	21845
609Ah		Homing acceleration	rw	unsigned32	1310720

5.5.4 Example of using the HM mode

1. Set X5E servo drive parameters, configure homing DI-related parameters for running the host device (the fourth group of parameters: digital input and output, specific reference to chapter 7.2, where P6.28 = 0). The startup and operation procedure of the HM mode is shown in the table below.

Table 5-17 The startup and operation procedure of the HM mode

Address	Name	Value setting (decimal value)
60600008h	Modes of operation	6
60980008h	Homing mode	1~35
	Alarm alagring	Any number → 128
60400010h	Alarm clearing	(valid at the rising edge)
Controlword	Homing	$6 \rightarrow 7 \rightarrow 15 \rightarrow 31$
		(Homing enable BIT4 is valid at the rising edge)
60990120h	Velocity of searching for deceleration	Default: 218453 (instruction unit/s)
0099012011	point signals in the HM mode	Default. 210433 (Ilistruction unit/s)
60990220h	Velocity of searching for origin switch	Default: 21845 (instruction unit /s)
0077022011	signals in the HM mode	Default. 21045 (Instruction unit /s)
609A0020h	Homing acceleration	Default: 1310720 (instruction unit /s^2)

5.5.5 Homing mode introduction

The CiA402 internally defines 31 homing modes, as described in Table 5-18 below.

HSW: Origin position sensor signal

NL: Negative limit signal

PL: Positive limit signal

ON: Valid state of the signal

OFF: Invalid state of the signal

 $\mathsf{OFF} \to \mathsf{ON}$: Jump edge from invalid state to valid state of the signal

 $\mbox{ON} \rightarrow \mbox{OFF:}$ Jump edge from valid state to invalid state of the signal

The following describes the various origin mode operation trajectories and signal state changes. The meaning of the symbols is shown in Figure 5-18.

Figure 5-18 List of supported homing modes

Homing mode	Description	
0	No homing mode assigned	
1	The axis runs in a negative direction at high speed. The axis decelerates to stop after encountering the OFF \rightarrow ON state of	
	the NL, and then reverses back to find the nearest Z pulse position and sets it as the origin.	
2	The axis runs in a positive direction at high speed. The axis decelerates to stop after encountering the OFF $ ightarrow$ ON state of	
	the PL, and then reverses back to find the nearest Z pulse position and sets it as the origin.	
	If the HSW is invalid when starting, the axis runs in a positive direction, otherwise, it runs in a negative direction. After	
3	encountering the ON \rightarrow OFF state of the HSW, the axis runs in a negative direction at a low speed to find the nearest Z	
	pulse position and set it as the origin.	
	If the HSW is invalid when starting, it runs in a positive direction, otherwise, it runs in a negative direction. After encounter-	
4	ing the OFF \rightarrow ON state of the HSW, the axis runs in a positive direction at a low speed to find the nearest Z pulse position	
	as the origin.	

Homing mode	Description
	If the HSW is invalid when starting, the axis runs in a negative direction, otherwise, it runs in a positive direction. After
5	encountering the ON \rightarrow OFF state of the HSW, the axis runs in a positive direction at a low speed to find the nearest Z
	pulse position and set it as the origin.
	If the HSW is invalid when starting, the axis runs in a negative direction, otherwise, it runs in a positive direction. After
6	encountering the ON \rightarrow OFF state of the HSW, the axis runs in a negative direction at a low speed to find the nearest Z
	pulse position and set it as the origin.
	If the HSW is invalid when starting, the axis runs in a positive direction, otherwise, it runs in a negative direction. After
7	encountering the ON \rightarrow OFF state of the HSW, the axis runs in a negative direction at a low speed to find the nearest Z
	pulse position and set it as the origin.
	If the HSW is invalid when starting, the axis runs in a positive direction, otherwise, it runs in a negative direction. After
8	encountering the OFF \rightarrow ON state of the HSW, the axis runs in a positive direction at a low speed to find the nearest Z
	pulse position and set it as the origin.
	The axis runs in the positive direction when starting, regardless of whether HSW is valid or invalid. After encountering the
9	$OFF \rightarrow ON$ state of the HSW, the axis runs in a negative direction at a low speed to find the nearest Z pulse position and
	set it as the origin.
	The axis runs in the positive direction when starting, regardless of whether HSW is valid or invalid. After encountering the
10	$ON \rightarrow OFF$ state of the HSW, the axis runs in a positive direction at a low speed to find the nearest Z pulse position and
	set it as the origin.
	If the HSW is invalid when starting, the axis runs in a negative direction, otherwise, it runs in a positive direction. After
11	encountering the ON \rightarrow OFF state of the HSW, the axis runs in a positive direction at a low speed to find the nearest Z
	pulse position and set it as the origin.
	If the HSW is invalid when starting, the axis runs in a negative direction, otherwise, it runs in a positive direction. After
12	encountering the OFF \rightarrow ON state of the HSW, the axis runs in a negative direction at a low speed to find the nearest Z
	pulse position and set it as the origin.
	The axis runs in the negative direction when starting, regardless of whether HSW is valid or invalid. After encountering the
13	OFF \rightarrow ON state of the HSW, the axis runs in a positive direction at a low speed to find the nearest Z pulse position and
	set it as the origin.
	The axis runs in the negative direction when starting, regardless of whether HSW is valid or invalid. After encountering the
14	$ON \rightarrow OFF$ state of the HSW, the axis runs in a negative direction at a low speed to find the nearest Z pulse position and
	set it as the origin.
15	Reserved
16	Reserved
	Similar to Mode 1, but instead of finding the Z pulse, the OFF → ON state position of NL encountered during negative
17	operation is used as the origin.
	Similar to Mode 2, but instead of finding the Z pulse, the OFF → ON state position of PL encountered during positive
18	running is used as the origin.
	Similar to Mode 3, but instead of finding the Z pulse, the ON \rightarrow OFF state position of HSW encountered during negative
19	running is used as the origin.
	Similar to Mode 4, but instead of finding the Z pulse, the OFF → ON state position of HSW encountered during positive
20	running is used as the origin.
	Similar to Mode 5, but instead of finding the Z pulse, the ON \rightarrow OFF state position of HSW encountered during positive
21	running is used as the origin.
	Similar to Mode 6, but instead of finding the Z pulse, the OFF \rightarrow ON state position of HSW encountered during negative
22	running is used as the origin.
_	Similar to Mode 7, but instead of finding the Z pulse, the ON \rightarrow OFF state position of HSW encountered during negative
23	running is used as the origin.
	Similar to Mode 8, but instead of finding the Z pulse, the OFF \rightarrow ON state position of HSW encountered during positive
24	running is used as the origin.
	I The state of the

Homing mode	Description
25	Similar to Mode 9, but instead of finding the Z pulse, the OFF \rightarrow ON state position of HSW encountered during negative
25	running is used as the origin.
26	Similar to Mode 10, but instead of finding the Z pulse, the ON \rightarrow OFF state position of HSW encountered during positive
20	running is used as the origin.
27	Similar to Mode 11, but instead of finding the Z pulse, the ON \rightarrow OFF state position of HSW encountered during positive
21	running is used as the origin.
28	Similar to Mode 12, but instead of finding the Z pulse, the OFF \rightarrow ON state position of HSW encountered during negative
28	running is used as the origin.
29	Similar to Mode 13, but instead of finding the Z pulse, the OFF \rightarrow ON state position of HSW encountered during positive
29	running is used as the origin.
20	Similar to Mode 14, but instead of finding the Z pulse, the ON \rightarrow OFF state position of HSW encountered during negative
30	running is used as the origin.
31	Reserved
32	Reserved
33	Find the nearest Z pulse as the origin when running in a negative direction
34	Find the nearest Z pulse as the origin when running in a positive direction
35	Set the current position as the origin

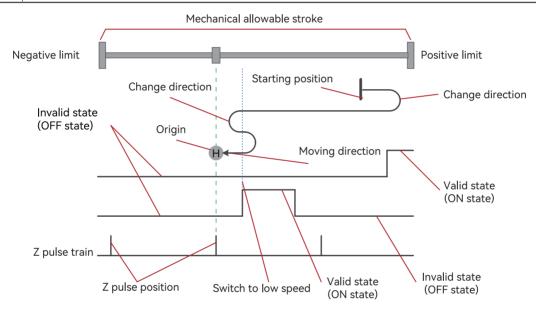


Figure 5-10 The meaning of the various symbols in the homing mode illustration

Generally, it is recommended to apply homing modes 3~6, 19~22, to situations where the OFF/ON state of the HSW exactly divides the entire mechanical allowable travel range into two sections, because under these 8 modes, whenever NL or PL is encountered, it stops and alarms, and does not automatically reverse to find the origin.

It is recommended that the homing modes 7~14 and 23~30 be applied in the case where the ON state of HSW divides the entire allowable travel range of the machine into exactly three sections, where the ON state interval occupies only a very small portion of the entire allowable travel range of the machine (i.e., the ON state is a short-term transient state).

The above are only suggestions and are not mandatory.

1. Mode 1, find NL and Z pulse

If the NL is invalid when starting, the axis runs in a negative direction at high speed. The axis decelerates to stop after encountering the OFF \rightarrow ON state of the NL, and it runs in a positive direction at a low speed. After encountering the ON \rightarrow OFF state of the NL, the axis runs in a positive direction at a low speed to find the nearest Z pulse position and set it as the origin.

If the NL is valid when starting, the axis runs in a positive direction at a low speed. After encountering the ON \rightarrow OFF state of the NL, keep the axis running to find the nearest Z pulse position and set it as the origin.

As shown in Figure 5-11, refer to Table 5-18.

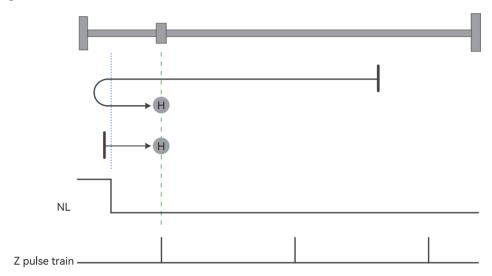


Figure 5-11 Homing mode 1 trajectory and signal state

2. Mode 2, find PL and Z pulse

If the PL is invalid when starting, the axis runs in a positive direction at high speed. The axis decelerates to stop after encountering the OFF \rightarrow ON state of the PL, and it runs in a negative direction at a low speed. After encountering the ON \rightarrow OFF state of the PL, the axis runs in a negative direction at a low speed to find the nearest Z pulse position and set it as the origin.

If the PL is valid when starting, the axis runs in a negative direction at a low speed. After encountering the ON \rightarrow OFF state of the PL, keep the axis running to find the nearest Z pulse position and set it as the origin.

As shown in Figure 5-12, refer to Table 5-18.

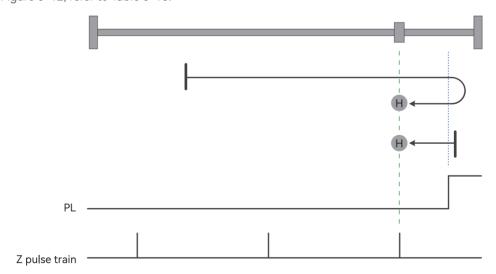


Figure 5-12 Homing mode 2 trajectory and signal state

3. Mode 3, find the HSW ON→OFF position and Z pulse when running in a negative direction

If the HSW is invalid when starting, the axis runs in a positive direction at high speed. The axis decelerates to stop after encountering the OFF \rightarrow ON state of the HSW, and it runs in a negative direction at a low speed. After encountering the ON \rightarrow OFF state of the HSW, the axis runs in a negative direction at a low speed to find the nearest Z pulse position and set it as the origin.

If the HSW is valid when starting, the axis runs in a negative direction at high speed. The axis decelerates to stop after encountering the ON \rightarrow OFF state of the HSW, then reverses back to the HSW valid position at high speed and runs in a negative direction at a low speed after decelerating to stop. After encountering the ON \rightarrow OFF state of the HSW, the axis runs in a negative direction at a low speed to find the nearest Z pulse position and set it as the origin.

In this homing method, no matter encountering NL or PL at the ON state, stop the homing process and alarm.

As shown in Figure 5-13, refer to Table 5-18.

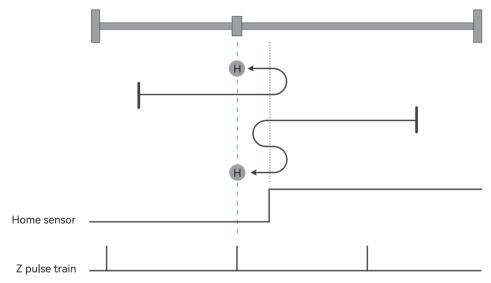


Figure 5-13 Homing mode 3 trajectory and signal state

4. Mode 4, find HSW OFF→ON position and Z pulse when running in positive direction

If the HSW is invalid when starting, it runs in a positive direction at a high speed. The axis decelerates to stop after encountering the OFF \rightarrow ON state of the HSW, then reverses back to the HSW invalid position at high speed and decelerates to stop, then runs in a positive direction at low speed. After encountering the OFF \rightarrow ON state of the HSW, the axis runs in a positive direction at a low speed to find the nearest Z pulse position as the origin.

If the HSW is valid when starting, it runs in a negative direction at a high speed. The axis decelerates to stop after encountering the ON \rightarrow OFF state of the HSW and runs in a positive direction at a low speed. After encountering the OFF \rightarrow ON state of the HSW, runs in the positive direction at low speed to find the nearest Z pulse position as the origin.

In this homing method, no matter encountering NL or PL at the ON state, stop the homing process and alarm.

As shown in Figure 5-14, refer to Table 5-18.

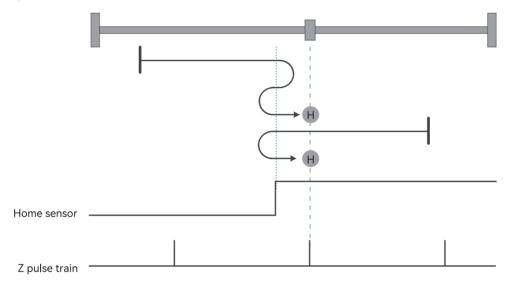


Figure 5-14 Homing mode 4 trajectory and signal state

5. Mode 5, find the HSW ON→OFF position and Z pulse when running in a positive direction

If the HSW is invalid when starting, the axis runs in a negative direction at high speed. The axis decelerates to stop after encountering the OFF \rightarrow ON state of the HSW, and it runs in a positive direction at a low speed. After encountering the ON \rightarrow OFF state of the HSW, the axis runs in a positive direction at a low speed to find the nearest Z pulse position and set it as the origin.

If the HSW is valid when starting, the axis runs in a positive direction at high speed. The axis decelerates to stop after encountering the ON \rightarrow OFF state of the HSW, then reverses back to the HSW valid position at high speed and runs in a positive direction at a low speed after it decelerates to stop. After encountering the ON \rightarrow OFF state of the HSW, the axis runs in a positive direction at a low speed to find the nearest Z pulse position and set it as the origin.

In this homing method, no matter encountering NL or PL at the ON state, stop the homing process and alarm.

As shown in Figure 5-15, refer to Table 5-18.

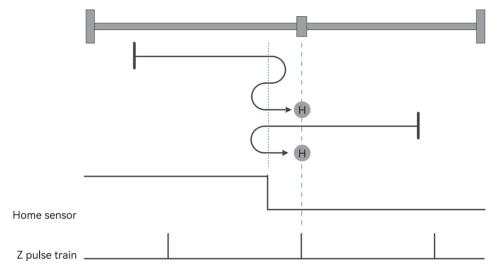


Figure 5-15 Homing mode 5 trajectory and signal state

6. Mode 6, find the HSW OFF → ON position and Z pulse when running in a negative direction

If the HSW is invalid when starting, the axis runs in a negative direction at high speed. The axis decelerates to stop after encountering the OFF \rightarrow ON state of the HSW, then reverses back to the HSW invalid position at high speed and decelerates to stop, then runs in a negative direction at a low speed. After encountering the OFF \rightarrow ON state of the HSW, the axis runs in a negative direction at a low speed to find the nearest Z pulse position and set it as the origin.

If the HSW is valid when starting, the axis runs in a positive direction at high speed. The axis decelerates to stop after encountering the ON \rightarrow OFF state of the HSW, and it runs in a negative direction at a low speed. After encountering the OFF \rightarrow ON state of the HSW, the axis runs in a negative direction at a low speed to find the nearest Z pulse position and set it as the origin.

In this homing method, no matter encountering NL or PL at the ON state, stop the homing process and alarm.

As shown in Figure 5-16, refer to Table 5-18.

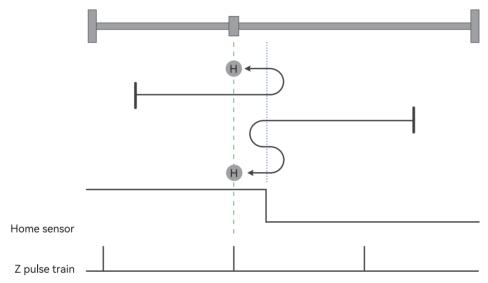


Figure 5-16 Homing mode 6 trajectory and signal state

7. Mode 7, find the HSW ON \rightarrow OFF position and Z pulse when running in a negative direction and automatically reverse when encountering PL

If the HSW is invalid and the origin is at the positive side of the sensor when starting, the axis runs in a positive direction at a high speed. The axis decelerates to stop after encountering the ON state of PL and runs in a negative direction at a high speed. The axis decelerates to stop after encountering the ON \rightarrow OFF state of HSW and reverses back to the HSW valid position at high speed and decelerates to stop(If the HSW valid area is narrow, it might enter the other side of the HSW invalid position area), then it runs in a negative direction at a low speed. Finds the nearest Z pulse position, and sets it as the origin after encountering the ON \rightarrow OFF state of HSW.

If the HSW is invalid and the origin is at the negative side of the sensor when starting, the axis runs in a positive direction at a high speed. The axis decelerates to stop after encountering the OFF \rightarrow ON state of HSW and runs in a negative direction at a low speed. Find the nearest Z pulse position and set it as the origin after the axis encountering the ON \rightarrow OFF state of HSW.

If the HSW is valid when starting, the axis runs in a negative direction at high speed. The axis decelerates to stop after encountering $ON \rightarrow OFF$ state of HSW and reverses back to the HSW valid position at high speed, and the axis decelerates to stop(If the HSW valid area is narrow, it might enter the other side of the HSW invalid position area), then it runs in a negative direction at a low speed. Find the nearest Z pulse position and set it as the origin after encountering the $ON \rightarrow OFF$ state of HSW.

In this homing method, automatically reverses after the axis runs in a positive direction and encounters the ON state of the PL. Encountering the ON state of the NL or encountering the ON state of the PL for the second time, stop the homing process and alarm.

As shown in Figure 5-17, refer to Table 5-18.

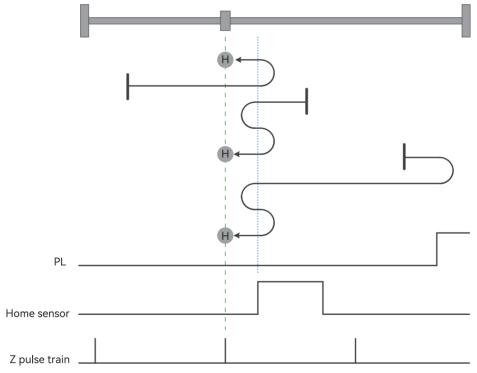


Figure 5-17 Homing mode 7 trajectory and signal state

8. Mode 8, find the HSW OFF \rightarrow ON position and Z pulse when running in a positive direction and automatically reverse when encountering PL

If the HSW is invalid and the origin is at the positive side of the sensor when starting, the axis runs in a positive direction at high speed. The axis decelerates to stop after encountering the ON state of PL and runs in a negative direction at high speed. The axis decelerates to stop after encountering the ON \rightarrow OFF state of HSW and runs in a positive direction at a low speed. Find the nearest Z pulse position and set it as the origin after the axis encountering the OFF \rightarrow ON state of HSW.

If the HSW is invalid and the origin is at the negative side of the sensor when starting, the axis runs in a positive direction at high speed. The axis decelerates to stop after encountering the OFF \rightarrow ON state of HSW and reverses back to the HSW invalid position at high speed, and it decelerates to stop, then the axis runs in a positive direction at a low speed. Find the nearest Z pulse position and set it as the origin after the axis encountering the OFF \rightarrow ON state of HSW.

If the HSW is valid when starting, the axis runs in a negative direction at high speed. The axis decelerates to stop after encountering the ON \rightarrow OFF state of HSW and the axis runs in a positive direction at a low speed. Find the nearest Z pulse position and set it as the origin after the axis encountering the OFF \rightarrow ON state of HSW.

In this homing method, automatically reverses after the axis runs in a positive direction and encounters the ON state of the PL; Encountering the ON state of the PL for a second time, stops the homing process and alarm.

As shown in Figure 5-18, refer to Table 5-18.

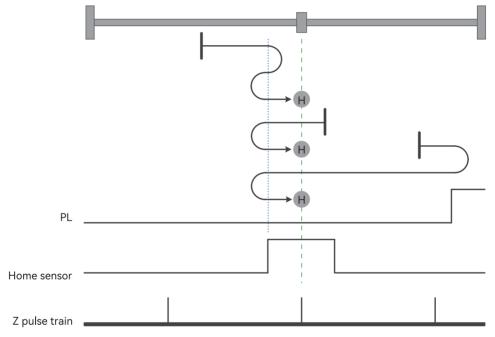


Figure 5-18 Homing mode 8 trajectory and signal state

9. Mode 9, find the HSW OFF \rightarrow ON position and Z pulse when running in a negative direction and automatically reverse when encountering PL

If the HSW is invalid and the origin is at the positive side of the sensor when starting, the axis runs in a positive direction at a high speed. The axis decelerates to stop after encountering the ON state of PL and runs in a negative direction at a high speed. The axis decelerates to stop after encountering the OFF \rightarrow ON state of HSW and reverses back to the HSW invalid position at high speed, and it decelerates to stop, then runs in a negative direction at a low speed. Find the nearest Z pulse position and set it as the origin after the axis encountering the OFF \rightarrow ON state of HSW.

If the HSW is invalid and the origin is at the negative side of the sensor when starting, the axis runs in a positive direction at high speed. The axis decelerates to stop after encountering the ON \rightarrow OFF state of HSW and runs in a negative direction at a low speed. Find the nearest Z pulse position and set it as the origin after the axis encountering the OFF \rightarrow ON state of HSW.

If the HSW is valid when starting, the axis runs in a positive direction at high speed. The axis decelerates to stop after encountering the ON \rightarrow OFF state of HSW and the axis runs in a negative direction at a low speed. Find the nearest Z pulse position and set it as the origin after the axis encountering the OFF \rightarrow ON state of HSW.

In this homing method, automatically reverses after the axis runs in a positive direction and encounters the ON state of the PL; Encountering the ON state of the PL for a second time, stops the homing process and alarm.

As shown in Figure 5-19, refer to Table 5-18.

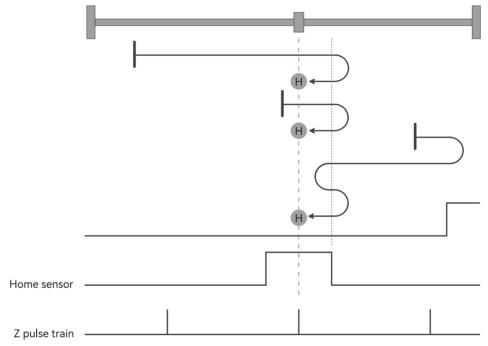


Figure 5-19 Homing mode 9 trajectory and signal state

10. Mode 10, find the HSW ON \rightarrow OFF position and Z pulse when running in a positive direction and automatically reverse when encountering PL

If the HSW is invalid and the origin is at the positive side of the sensor when starting, the axis runs in a positive direction at a high speed. The axis decelerates to stop after encountering the ON state of PL and it runs in a negative direction at a high speed. The axis decelerates to stop after encountering the OFF \rightarrow ON state of HSW and runs in a positive direction at a low speed. Find the nearest Z pulse position and set it as the origin after the axis encountering the ON \rightarrow OFF state of HSW.

If the HSW is invalid and the origin is at the negative side of the sensor when starting, the axis runs in a positive direction at high speed. The axis decelerates to stop after encountering the ON \rightarrow OFF state of HSW and reverses back to the HSW valid position at high speed, and decelerates to stop (If the HSW valid area is narrow, it might enter the other side of the HSW invalid position area), then it runs in a positive direction at a low speed. Find the nearest Z pulse position and set it as the origin after the axis encountering the OFF \rightarrow ON state of HSW.

If the HSW is valid when starting, the axis runs in a positive direction at high speed. The axis decelerates to stop after encountering the ON \rightarrow OFF state of HSW and reverses back to the HSW valid position at high speed, and decelerates to stop (If the HSW valid area is narrow, it might enter the other side of the HSW invalid position area), then it runs in a positive direction at a low speed. Find the nearest Z pulse position and set it as the origin after the axis encountering the OFF \rightarrow ON state of HSW.

In this homing method, automatically reverses after the axis runs in a positive direction and encounters the ON state of the PL; Encountering the ON state of the PL for a second time, stops the homing process and alarm.

As shown in Figure 5-20, refer to Table 5-18.

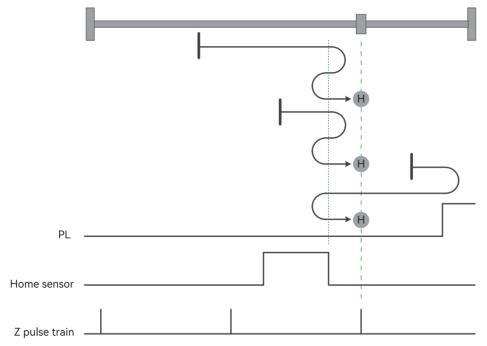


Figure 5-20 Homing mode 10 trajectory and signal state

11. Mode 11, find the HSW ON \rightarrow OFF position and Z pulse when running in a positive direction and automatically reverse when encountering NL

If the HSW is invalid and the origin is at the positive side of the sensor when starting, the axis runs in a negative direction at high speed. The axis decelerates to stop after encountering the OFF \rightarrow ON state of HSW and runs in a positive direction at a low speed. Find the nearest Z pulse position and set it as the origin after encountering the ON \rightarrow OFF state of HSW.

If the HSW is invalid and the origin is at the negative side of the sensor when starting, the axis runs in a negative direction at high speed. The axis decelerates to stop after encountering the ON state of NL and runs in a positive direction at high speed. The axis decelerates to stop after encountering the ON \rightarrow OFF state of HSW and reverses back to the HSW valid position at high speed and decelerates to stop (If the HSW valid area is narrow, it might enter the other side of the HSW invalid position area), then runs in a positive direction at a low speed. Find the nearest Z pulse position and set it as the origin after encountering the ON \rightarrow OFF state of HSW.

If the HSW is valid when starting, the axis runs in a positive direction at high speed. The axis decelerates to stop after encountering $ON \rightarrow OFF$ state of HSW, reverses back to the HSW valid position at high speed, and decelerates to stop(If the HSW valid area is narrow, it might enter the other side of the HSW invalid position area), then runs in a positive direction at a low speed. Find the nearest Z pulse position and set it as the origin after encountering the $ON \rightarrow OFF$ state of HSW.

In this homing method, automatically reverses after the axis runs in a positive direction and encounters the ON state of the NL; Encountering the ON state of the NL for the second time, stops the homing process and alarm.

As shown in Figure 5-21, refer to Table 5-18.

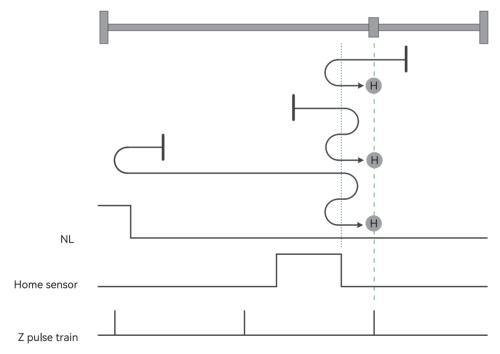


Figure 5-21 Homing mode 11 trajectory and signal state

12. Mode 12, find the HSW OFF \rightarrow ON position and Z pulse when running in a negative direction and automatically reverse when encountering NL

If the HSW is invalid and the origin is at the positive side of the sensor when starting, the axis runs in a negative direction at high speed. The axis decelerates to stop after encountering the OFF \rightarrow ON state of HSW and reverses back to the HSW invalid position at high speed and decelerates to stop, then the axis runs in a negative direction at a low speed. Find the nearest Z pulse position and set it as the origin after the axis encountering the OFF \rightarrow ON state of HSW.

If the HSW is invalid and the origin is at the negative side of the sensor when starting, the axis runs in a negative direction at high speed. The axis decelerates to stop after encountering the ON state of NL and runs in a positive direction at high speed. The axis decelerates to stop after encountering the ON \rightarrow OFF state of HSW and the axis runs in a negative direction at a low speed. Find the nearest Z pulse position and set it as the origin after encountering the OFF \rightarrow ON state of HSW.

If the HSW is valid when starting, the axis runs in a positive direction at high speed. The axis decelerates to stop after encountering the ON \rightarrow OFF state of HSW and runs in a negative direction at a low speed. Find the nearest Z pulse position and set it as the origin after the axis encounters the OFF \rightarrow ON state of HSW.

In this homing method, automatically reverses after the axis runs in a positive direction and encounters the ON state of the NL; Encountering the ON state of the NL for the second time, stops the homing process and alarm.

As shown in Figure 5-22, refer to Table 5-18.

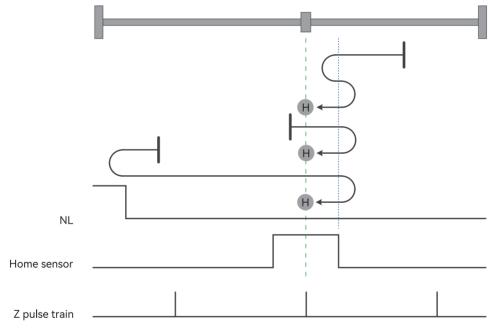


Figure 5-22 Homing mode 12 trajectory and signal state

13. Mode 13, find the HSW OFF \rightarrow ON position and Z pulse when running in a positive direction and automatically reverse when encountering NL

If the HSW is invalid and the origin is at the positive side of the sensor when starting, the axis runs in a negative direction at low speed. The axis decelerates to stop after encountering the ON \rightarrow OFF state of HSW and runs in a positive direction at a low speed, Find the nearest Z pulse position and set it as the origin after the axis encounters the OFF \rightarrow ON state of HSW.

If the HSW is invalid and the origin is at the negative side of the sensor when starting, the axis runs in a negative direction at high speed. The axis decelerates to stop after encountering the ON state of NL and runs in a positive direction at high speed. The axis decelerates to stop after encountering the OFF \rightarrow ON state of HSW and reverses back to the HSW invalid position at high speed and decelerates to stop, then runs in a positive direction at a low speed. Find the nearest Z pulse position and set it as the origin after encountering the OFF \rightarrow ON state of HSW.

If the HSW is valid when starting, the axis runs in a negative direction at high speed. The axis decelerates to stop after encountering the ON \rightarrow OFF state of HSW and runs in a positive direction at a low speed. Find the nearest Z pulse position and set it as the origin after the axis encountering the OFF \rightarrow ON state of HSW.

In this homing method, automatically reverses after the axis runs in a positive direction and encounters the ON state of the NL; Encountering the ON state of the NL for the second time, stops the homing process and alarm.

As shown in Figure 5-23, refer to Table 5-18.

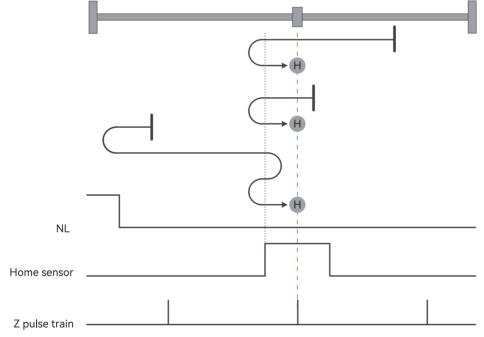


Figure 5-23 Homing mode 13 trajectory and signal state

14. Mode 14, find the HSW ON \rightarrow OFF position and Z pulse when running in a negative direction and automatically reverse when encountering NL

If the HSW is invalid and the origin is at the positive side of the sensor when starting, the axis runs in a negative direction at high speed. The axis decelerates to stop after encountering $ON \rightarrow OFF$ state of the HSW and reverses back to the HSW valid position at high speed and decelerates to stop (If the HSW valid area is narrow, it might enter the other side of the HSW invalid position area), then runs in a negative direction at a low speed. Find the nearest Z pulse position and set it as the origin after encountering the $ON \rightarrow OFF$ state of the HSW.

If the HSW is invalid and the origin is at the negative side of the sensor when starting, the axis runs in a negative direction at high speed. The axis decelerates to stop after encountering the ON state of NL and the axis runs in a positive direction at high speed. The axis decelerates to stop after encountering the OFF \rightarrow ON state of HSW and runs in a negative direction at a low speed. Find the nearest Z pulse position and set it as the origin after encountering the ON \rightarrow OFF state of HSW.

If the HSW is valid when starting, the axis runs in a negative direction at high speed. The axis decelerates to stop after encountering the $ON \rightarrow OFF$ state of HSW and reverses back to HSW valid position at high speed and decelerates to stop, then runs in a negative position at a low speed. Find the nearest Z pulse position and set it as the origin after encountering the $ON \rightarrow OFF$ state of HSW.

In this homing method, automatically reverses after the axis runs in a positive direction and encounters the ON state of the PL; Encountering the ON state of the PL for a second time, stops the homing process and alarm.

As shown in Figure 5-24, refer to Table 5-18.

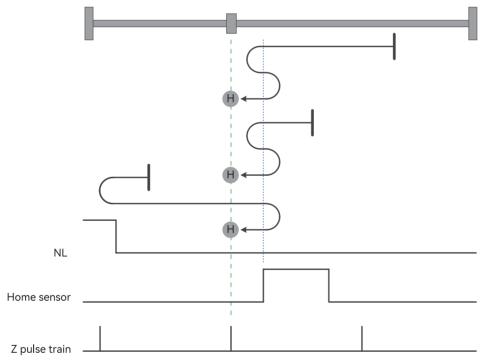


Figure 5-24 Homing mode 14 trajectory and signal state

- 15. Mode 15, reserved. Please do not set it.
- 16. Mode 16, reserved. Please do not set it.

17. Mode 17, find NL

If the NL is invalid when starting, the axis runs in a negative direction at a high speed. The axis decelerates to stop after encountering the OFF \rightarrow ON state of NL and runs in a positive direction at a low speed. The axis decelerates to stop after encountering the ON \rightarrow OFF state of the NL and sets the stop position as the origin.

If the NL is valid when starting, the axis runs in a positive direction at a low speed. The axis decelerates to stop after encountering the $ON \rightarrow OFF$ state of NL, and sets stop position as the origin.

As shown in Figure 5-25, refer to Table 5-18.

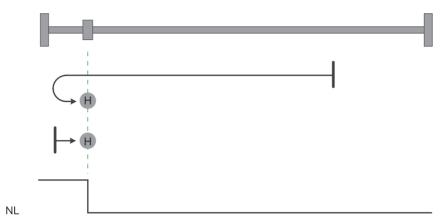


Figure 5-25 Homing mode 17 trajectory and signal state

18. Mode 18, find PL

If the PL is invalid when starting, the axis runs in a positive direction at a high speed. The axis decelerates to stop after encountering the OFF \rightarrow ON state of PL and runs in a negative direction at a low speed. The axis decelerates to stop after encountering the ON \rightarrow OFF state of the PL and sets the stop position as the origin.

If the PL is valid when starting, the axis runs in a positive direction at a low speed. The axis decelerates to stop after encountering the $ON \rightarrow OFF$ state of PL and sets the stop position as the origin.

As shown in Figure 5-26, refer to Table 5-18.

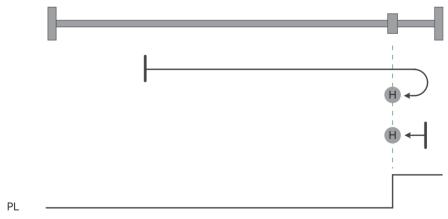


Figure 5-26 Homing mode 18 trajectory and signal state

19. Mode 19, find the HSW ON→OFF position when running in a negative direction

If the HSW is invalid when starting, the axis runs in a positive direction at a high speed. The axis decelerates to stop after encountering the OFF \rightarrow ON state of the HSW and runs in a negative direction at a low speed. The axis decelerates to stop after encountering the ON \rightarrow OFF state of the HSW and sets the stop position as the origin.

If the HSW is valid when starting, the axis runs in a negative direction at a high speed. The axis decelerates to stop after encountering the $ON \rightarrow OFF$ state of the HSW and reverses back to the HSW valid position at high speed and decelerates to stop, then runs in a negative direction at a low speed. The axis decelerates to stop after encountering the $ON \rightarrow OFF$ state of the HSW and sets the stop position as the origin.

In this homing method, no matter encountering the PL or NL in the ON state, the homing process will stop and alarm As shown in Figure 5–27, refer to Table 5–18.

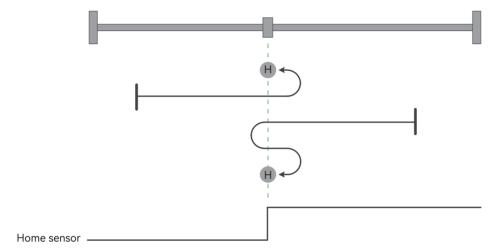


Figure 5-27 Homing mode 19 trajectory and signal state

20. Mode 20, find the HSW OFF→ON position when running in a positive direction

If the HSW is invalid when starting, the axis runs in a positive direction at a high speed. The axis decelerates to stop after encountering the OFF \rightarrow ON state of the HSW and reverses back to the HSW invalid position at high speed and decelerates to stop, then runs in a positive direction at a low speed. The axis decelerates to stop after encountering the OFF \rightarrow ON state of the HSW and sets the stop position as the origin.

If the HSW is valid when starting, the axis runs in a negative direction at high speed. The axis decelerates to stop after encountering the $ON \rightarrow OFF$ state of the HSW and runs in a positive direction at a low speed. The axis decelerates to stop after encountering the $OFF \rightarrow ON$ state of the HSW and sets the stop position as the origin.

In this homing method, no matter encountering the PL or NL in the ON state, the homing process will stop and alarm.

As shown in Figure 5-28, refer to Table 5-18.

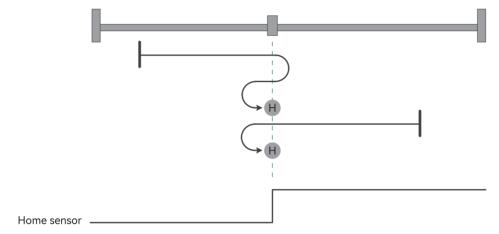


Figure 5-28 Homing mode 20 trajectory and signal state

21. Mode 21, find the HSW ON→OFF position when running in a positive direction

If the HSW is invalid when starting, the axis runs in a negative direction at a high speed. The axis decelerates to stop after encountering the OFF \rightarrow ON state of the HSW and runs in a positive direction at a low speed. The axis decelerates to stop after encountering the ON \rightarrow OFF state of the HSW and sets the stop position as the origin.

If the HSW is valid when starting, the axis runs in a positive direction at high speed. The axis decelerates to stop after encountering the $ON \rightarrow OFF$ state of the HSW and reverses back to the HSW valid position at high speed and decelerates to stop, then the axis runs in a positive direction at a low speed. The axis decelerates to stop after encountering the $ON \rightarrow OFF$ state of the HSW and sets the stop position as the origin.

In this homing method, no matter encountering the PL or NL in the ON state, the homing process will stop, and alarm.

As shown in Figure 5-29, refer to Table 5-18.

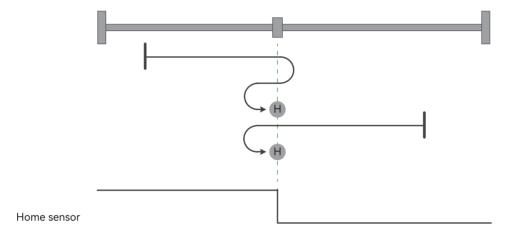


Figure 5-29 Homing mode 21 trajectory and signal state

22. Mode 22, find the HSW OFF→ON position when running in a negative direction

If the HSW is invalid when starting, the axis runs in a negative direction at a high speed. The axis decelerates to stop after encountering the OFF \rightarrow ON state of the HSW and reverses back to the HSW invalid position at high speed and decelerates to stop, then the axis runs in a negative direction at a low speed. The axis decelerates to stop after encountering the OFF \rightarrow ON state of the HSW and sets the stop position as the origin.

If the HSW is valid when starting, the axis runs in a positive direction at high speed. The axis decelerates to stop after encountering the ON \rightarrow OFF state of the HSW and runs in a negative direction at a low speed. The axis decelerates to stop after encountering the OFF \rightarrow ON state of the HSW and sets the stop position as the origin.

In this homing method, no matter encountering the PL or NL in the ON state, the homing process will stop, and alarm As shown in Figure 5–30, refer to Table 5–18.

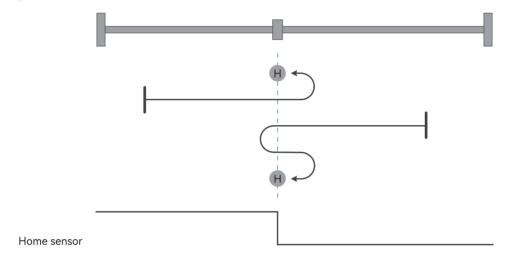


Figure 5-30 Homing mode 22 trajectory and signal state

23. Mode 23, find the HSW ON → OFF position when running in a negative direction and automatically reverse when encountering PL

If the HSW is invalid and the origin is at the positive side of the sensor when starting, the axis runs in a positive direction at high speed. The axis decelerates to stop after encountering the ON state of PL and runs in a negative direction at high speed. The axis decelerates to stop after encountering the ON \rightarrow OFF state of HSW and reverses back to the HSW valid position at high speed and decelerates to stop(If the HSW valid area is narrow, it might enter the other side of the HSW invalid position area), then runs in a negative direction at a low speed. The axis decelerates to stop after encountering the ON \rightarrow OFF state of the HSW and sets the stop position as the origin.

If the HSW is invalid and the origin is at the negative side of the sensor when starting, the axis runs in a positive direction at high speed. The axis decelerates to stop after encountering the OFF \rightarrow ON state of the HSW and runs in a negative direction at high speed. The axis decelerates to stop after encountering the ON \rightarrow OFF state of the HSW and sets the stop position as the origin.

If the HSW is valid when starting, the axis runs in a negative direction at high speed. The axis decelerates to stop after encountering the ON \rightarrow OFF state of HSW and reverses back to the HSW valid position at high speed and decelerates to stop(If the HSW valid area is narrow, it might enter the other side of the HSW invalid position area), then runs in a negative direction at a low speed. The axis decelerates to stop after encountering the ON \rightarrow OFF state of the HSW and sets the stop position as the origin.

In this homing method, automatically reverses after the axis runs in a positive direction and encounters the ON state of the PL; Encountering the ON state of the PL for the second time, stops the homing process and alarm.

As shown in Figure 5-31, refer to Table 5-18.

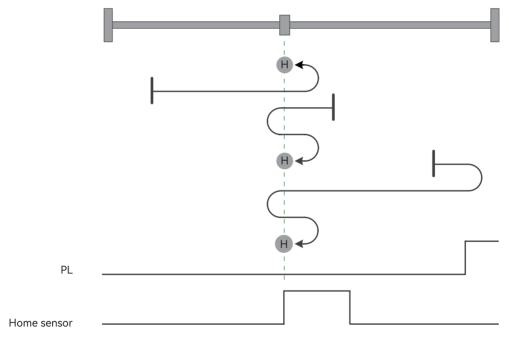


Figure 5-31 Homing mode 23 trajectory and signal state

24. Mode 24, find the HSW OFF \rightarrow ON position when running in a positive direction, and automatically reverse when encountering PL

If the HSW is invalid and the origin is at the positive side of the sensor when starting, the axis runs in a positive direction at high speed. The axis decelerates to stop after encountering the ON state of PL and the axis runs in a negative direction at high speed. The axis decelerates to stop after encountering the ON \rightarrow OFF state of HSW and the axis runs in a positive direction at a low speed. The axis decelerates to stop after encountering the OFF \rightarrow ON state of HSW, set the stop position as the origin.

If the HSW is invalid and the origin is at the negative side of the sensor when starting, the axis runs in a positive direction at high speed. The axis decelerates to stop after encountering the OFF \rightarrow ON state of the HSW and reverses back to the HSW invalid position at high speed and The axis decelerates to stop, then the axis runs in a positive direction at a low speed. The axis decelerates to stop after encountering the OFF \rightarrow ON state of the HSW, and sets the stop position as the origin.

If the HSW is valid when starting, the axis runs in a negative direction at high speed. The axis decelerates to stop after encountering $ON \rightarrow OFF$ state of HSW and the axis runs in a positive direction at a low speed. The axis decelerates to stop after encountering the $OFF \rightarrow ON$ state of the HSW, and sets the stop position as the origin.

In this homing method, automatically reverses after the axis runs in a positive direction and encounters the ON state of the PL; Encountering the ON state of the PL for the second time, stops the homing process and alarm

As shown in Figure 5-32, refer to Table 5-18.

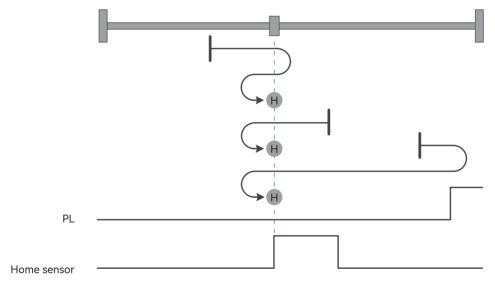


Figure 5-32 Homing mode 24 trajectory and signal state

25. Mode 25, find the HSW OFF \rightarrow ON position when running in a negative direction and automatically reverse when encountering PL

If the HSW is invalid and the origin is at the positive side of the sensor when starting, the axis runs in a positive direction at high speed. The axis decelerates to stop after encountering the ON state of PL and runs in a negative direction at high speed. The axis decelerates to stop after encountering the OFF \rightarrow ON state of HSW and reverses back to the HSW invalid position at high speed, and decelerates to stop, then runs in a negative direction at a low speed. The axis decelerates to stop after encountering the OFF \rightarrow ON state of HSW and sets the stop position as the origin.

If the HSW is invalid and the origin is at the negative side of the sensor when starting, the axis runs in a positive direction at high speed. The axis decelerates to stop after encountering the ON \rightarrow OFF state of the HSW and runs in a negative direction at a low speed. The axis decelerates to stop after encountering the OFF \rightarrow ON state of the HSW and sets the stop position as the origin.

If the HSW is valid when starting, the axis runs in a positive direction at high speed. The axis decelerates to stop after encountering the ON \rightarrow OFF state of HSW and runs in a negative direction at a low speed. The axis decelerates to stop after encountering the OFF \rightarrow ON state of the HSW and sets the stop position as the origin.

In this homing method, automatically reverses after the axis runs in a positive direction and encounters the ON state of the PL; Encountering the ON state of the PL for the second time, stops the homing process and alarm

As shown in Figure 5-33, refer to Table 5-18.

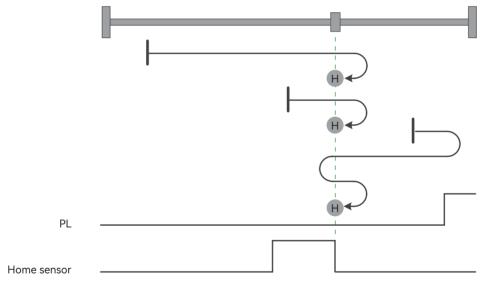


Figure 5-33 Homing mode 25 trajectory and signal state

26. Mode 26, find the HSW ON → OFF position when running in a positive direction and automatically reverse when encountering PL

If the HSW is invalid and the origin is at the positive side of the sensor when starting, the axis runs in a positive direction at high speed. The axis decelerates to stop after encountering the ON state of PL and runs in a negative direction at high speed. The axis decelerates to stop after encountering the OFF \rightarrow ON state of the HSW and runs in a positive direction at a low speed. The axis decelerates to stop after encountering the ON \rightarrow OFF state of the HSW and sets the stop position as the origin.

If the HSW is invalid and the origin is at the negative side of the sensor when starting, the axis runs in a positive direction at high speed. The axis decelerates to stop after encountering the ON \rightarrow OFF state of HSW and reverses back to the HSW valid position at high speed and decelerates to stop(If the HSW valid area is narrow, it might enter the other side of the HSW invalid position area), then runs in a positive direction at a low speed. The axis decelerates to stop after encountering the ON \rightarrow OFF state of HSW and sets the stop position as the origin.

If the HSW is valid when starting, the axis runs in a positive direction at high speed. The axis decelerates to stop after encountering the ON \rightarrow OFF state of HSW and reverses back to the HSW valid position at high speed and decelerates to stop(If the HSW valid area is narrow, it might enter the other side of the HSW invalid position area), then runs in a positive direction at a low speed. The axis decelerates to stop after encountering the ON \rightarrow OFF state of the HSW and sets the stop position as the origin.

In this homing method, automatically reverses after the axis runs in a positive direction and encounters the ON state of the PL; Encountering the ON state of the PL for the second time, stops the homing process and alarm

As shown in Figure 5-34, refer to Table 5-18.

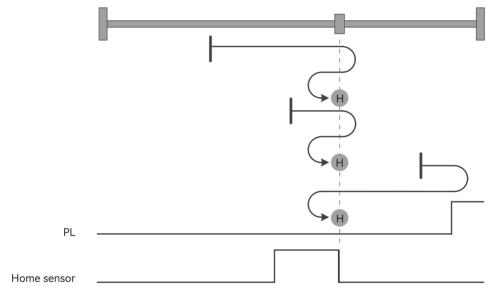


Figure 5-34 Homing mode 26 trajectory and signal state

27. Mode 27, find the HSW ON \rightarrow OFF position when running in a positive direction and automatically reverse when encountering NL

If the HSW is invalid and the origin is at the positive side of the sensor when starting, the axis runs in a negative direction at high speed. The axis decelerates to stop after encountering the OFF \rightarrow ON state of HSW and runs in a positive direction at a low speed. The axis decelerates to stop after encountering the ON \rightarrow OFF state of the HSW and sets the stop position as the origin.

If the HSW is invalid and the origin is at the negative side of the sensor when starting, the axis runs in a negative direction at high speed. The axis decelerates to stop after encountering the ON state of NL and runs in a positive direction at high speed. The axis decelerates to stop after encountering ON \rightarrow OFF state of the HSW and reverses back to the HSW valid position at high speed and decelerates to stop(If the HSW valid area is narrow, it might enter the other side of the HSW invalid position area), then runs in a positive direction at a low speed. The axis decelerates to stop after encountering the ON \rightarrow OFF state of the HSW and sets the stop position as the origin.

If the HSW is valid when starting, the axis runs in a positive direction at high speed. The axis decelerates to stop after encountering the ON \rightarrow OFF state of HSW and reverses back to the HSW valid position at high speed and decelerates to stop(If the HSW valid area is narrow, it might enter the other side of the HSW invalid position area), then runs in a positive direction at a low speed. The axis decelerates to stop after encountering the ON \rightarrow OFF state of the HSW and sets the stop position as the origin.

In this homing method, automatically reverses after the axis runs in a positive direction and encounters the ON state of the NL; Encountering the ON state of the NL for the second time, stops the homing process and alarm.

As shown in Figure 5-35, refer to Table 5-18.

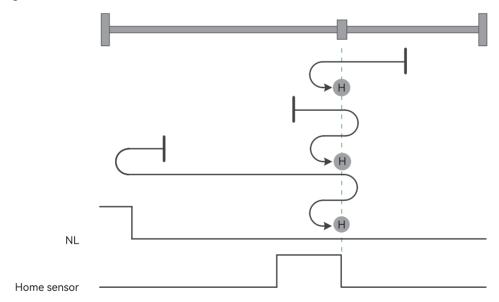


Figure 5-35 Homing mode 27 trajectory and signal state

28. Mode 28, find the HSW OFF \rightarrow ON position when running in a negative direction and automatically reverse when encountering NL

If the HSW is invalid and the origin is at the positive side of the sensor when starting, the axis runs in a negative direction at high speed. The axis decelerates to stop after encountering the OFF \rightarrow ON state of HSW and reverses back to the HSW invalid position at high speed and decelerates to stop, then runs in a negative direction at a low speed. The axis decelerates to stop after encountering the OFF \rightarrow ON state of HSW and sets the stop position as the origin.

If the HSW is invalid and the origin is at the negative side of the sensor when starting, the axis runs in a negative direction at high speed. The axis decelerates to stop after encountering the ON state of NL and the axis runs in a positive direction at high speed. The axis decelerates to stop after encountering the ON \rightarrow OFF state of the HSW and the axis runs in a negative direction at a low speed. The axis decelerates to stop after encountering the OFF \rightarrow ON state of the HSW and sets the stop position as the origin.

If the HSW is valid when starting, the axis runs in a positive direction at high speed. The axis decelerates to stop after encountering $ON \rightarrow OFF$ state of HSW and the axis runs in a negative direction at a low speed. The axis decelerates to stop after encountering the $OFF \rightarrow ON$ state of the HSW and sets the stop position as the origin.

In this homing method, automatically reverses after the axis runs in a positive direction and encounters the ON state of the NL; Encountering the ON state of the PL or encountering the ON state of the NL for the second time, stops the homing process and alarm.

As shown in Figure 5-36, refer to Table 5-18.

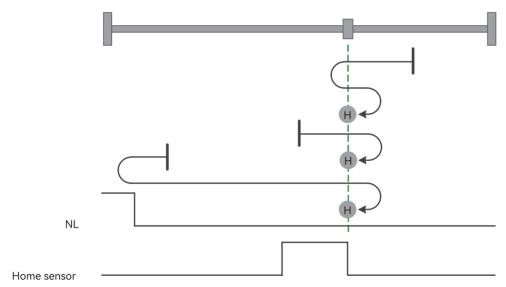


Figure 5-36 Homing mode 28 trajectory and signal state

29. Mode 29, find the HSW OFF \rightarrow ON position when running in a positive direction and automatically reverse when encountering NL

If the HSW is invalid and the origin is at the positive side of the sensor when starting, the axis runs in a negative direction at high speed. The axis decelerates to stop after encountering the $ON \rightarrow OFF$ state of HSW and runs in a positive direction at a low speed. The axis decelerates to stop after encountering the $OFF \rightarrow ON$ state of the HSW and sets the stop position as the origin.

If the HSW is invalid and the origin is at the negative side of the sensor when starting, the axis runs in a negative direction at a high speed. The axis decelerates to stop after encountering the ON state of NL and runs in a positive direction at a high speed. The axis decelerates to stop after encountering the OFF \rightarrow ON state of the HSW and reverses back to the HSW invalid position at high speed and decelerates to stop, then the axis runs in a positive direction at a low speed. The axis decelerates to stop after encountering the OFF \rightarrow ON state of the HSW and sets the stop position as the origin.

If the HSW is valid when starting, the axis runs in a negative direction at high speed. The axis decelerates to stop after encountering the ON \rightarrow OFF state of HSW and runs in a positive direction at a low speed. The axis decelerates to stop after encountering the OFF \rightarrow ON state of the HSW and sets the stop position as the origin.

In this homing method, automatically reverses after the axis runs in a positive direction and encounters the ON state of the NL; Encountering the ON state of the PL or encountering the ON state of the NL for the second time, stops homing process and the alarm.

As shown in Figure 5-37, refer to Table 5-18.

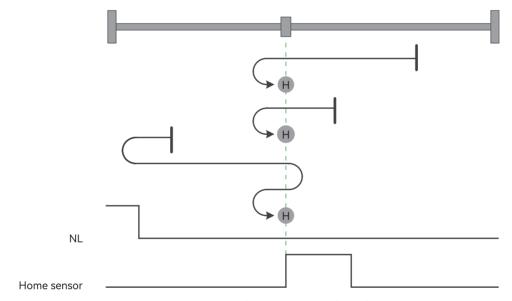


Figure 5-37 Homing mode 29 trajectory and signal state

30. Mode 30, find the HSW ON → OFF position when running in a negative direction and automatically reverse when encountering NL

If the HSW is invalid and the origin is at the positive side of the sensor when starting, the axis runs in a negative direction at high speed. The axis decelerates to stop after encountering the ON \rightarrow OFF state of the HSW and reverses back to the HSW valid position at high speed and decelerates to stop(If the HSW valid area is narrow, it might enter the other side of the HSW invalid position area), then runs in a negative direction at a low speed. The axis decelerates to stop after encountering the ON \rightarrow OFF state of the HSW and sets the stop position as the origin.

If the HSW is invalid and the origin is at the negative side of the sensor when starting, the axis runs in a negative direction at high speed. The axis decelerates to stop after encountering the ON state of NL and runs in a positive direction at high speed. The axis decelerates to stop after encountering the OFF \rightarrow ON state of HSW and runs in a negative direction at a low speed. The axis decelerates to stop after encountering the ON \rightarrow OFF state of HSW and sets the stop position as the origin.

If the HSW is valid when starting, the axis runs in a negative direction at high speed. The axis decelerates to stop after encountering the ON \rightarrow OFF state of HSW and reverses back to the HSW valid position at high speed and decelerates to stop(If the HSW valid area is narrow, it might enter the other side of the HSW invalid position area), then runs in a negative direction at a low speed. The axis decelerates to stop after encountering the ON \rightarrow OFF state of the HSW and sets the stop position as the origin.

In this homing method, automatically reverses after the axis runs in a positive direction and encounters the ON state of the NL; Encountering the ON state of the PL or encountering the ON state of the NL for the second time, stops the homing process and alarm.

As shown in Figure 5-38, refer to Table 5-18.

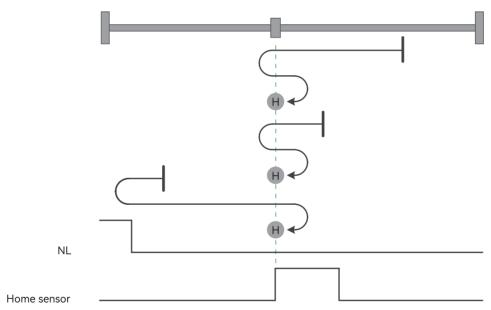


Figure 5-38 Homing mode 30 trajectory and signal state

- 31. Mode 31, reserved. Please do not set it.
- 32. Mode 32, reserved. Please do not set it.

33. Mode 33, find the nearest Z pulse when running in a negative direction

Find the nearest Z pulse position and set it as the origin when starting, the axis runs in a negative direction at a low speed. If the axis encounters the ON state of NL before the Z pulse position, then decelerates to stop and finds the nearest Z pulse position in a positive direction then sets as the origin.

In this homing method, automatically reverses after the axis runs in a positive direction and encounters the ON state of the NL; Encountering the ON state of the NL for the second time, stops the homing process and alarm.

As shown in Figure 5-39, refer to Table 5-18.

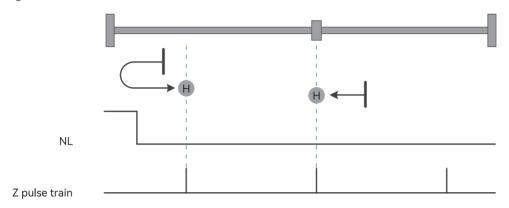


Figure 5-39 Homing mode 33 trajectory and signal state

34. Mode 34, find the nearest Z pulse when running in a positive direction

Find the nearest Z pulse position and set it as the origin when starting, the axis runs in a positive direction at a low speed. If the axis encounters the ON state of PL before the Z pulse position, then decelerates to stop and finds the nearest Z pulse position in a negative direction then set as the origin.

In this homing method, automatically reverses after the axis runs in a positive direction and encounters the ON state of the PL; Encountering the ON state of the PL for the second time, stops the homing process and alarm.

As shown in Figure 5-40, refer to Table 5-18.

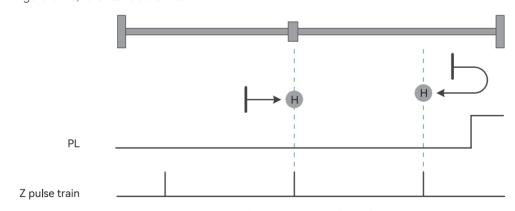


Figure 5-40 $\,$ Homing mode 34 trajectory and signal state

5.6 Interpolation mode (IP)

The interpolation position mode supports only synchronous update instructions and does not currently support asynchronous update instructions. In this mode, the position instructions are processed by the host device and sent to the servo drive cyclically. Unlike the profile position control mode where the final target position is given at one time, the interpolation position mode is capable of realizing single-axis or multi-axis synchronous motion and is suitable for applications with high synchronization requirements. To enable the interpolation position mode, set object 6060H to 7. This mode is suitable for CANopen communication. The input and output of the interpolation mode are shown in Figure 5-41, and Figure 5-42 demonstrates the calculation process of single-axis linear interpolation position. If the interpolation position is synchronously followed, the interpolation cycle shown in the figure is the synchronization cycle.

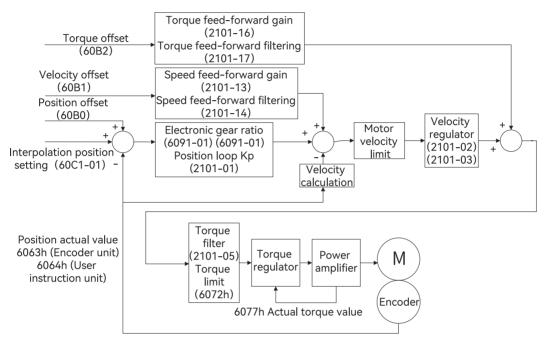


Figure 5-41 Interpolation position control block diagram

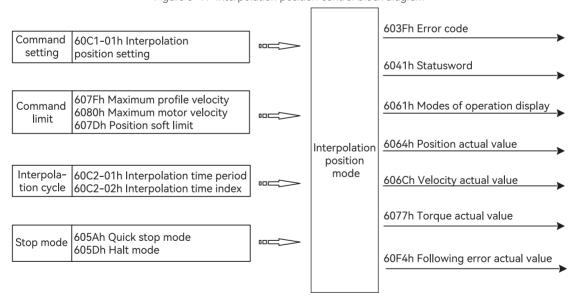


Figure 5-42 Input and output of interpolation position mode

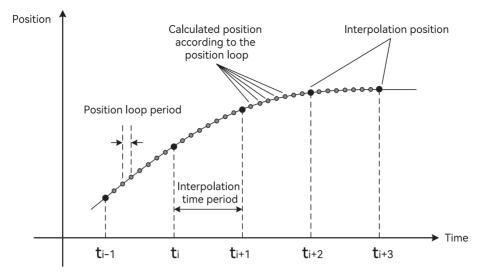


Figure 5-43 Single-axis linear interpolation

5.6.1 Controlword setting in the IP mode

The meaning of each bit of controlword (6040h) in the interpolation mode is shown in Table 5-19 where the background is marked in dark color for the IP-specific control commands.

Table 5-19 Controlword description in the IP mode

Bit	Name	Description		
0	Switch on	Servo enable must be set to 1		
1	Enable voltage	Servo enable must be set to 1		
2	Quick stop	Servo enable must be set to 1		
	Quick stop	Set to 0 to enable quick stop		
3	Operation enable	Servo enable must be set to 1		
,	Enable interpolation position	0: Invalid 1: Valid (interpolation must be high level throughout the process)		
4	mode			
5, 6	IP mode reserved	Unavailable		
7	Fault reset	In $0 \rightarrow 1$ change, one fault reset is executed. When this position is equal to 1, other		
,	rauit reset	control instructions are invalid		
		0: Invalid		
8	Pause	1: Valid		
		Stop executing the instruction when it is valid.		
9	IP mode reserved	Unavailable		
10	Reserved	Unavailable		
11~15	Manufacturer customization	Unavailable		

5.6.2 Statusword setting in the IP mode

The meaning of each bit of Statusword (6041h) in the IP mode is shown in Table 5-20 where the background is marked in dark color for the IP -specific control commands.

Table 5-20 Statusword description in the IP mode

Bit	Name	Description
		0: Invalid
0	Ready to switch on	1: Valid
		When valid, it means that the servo can be enabled.

0. Invalid 1. Valid When valid, it means that the servo can be enabled. 2. Operation enabled 3. Servo fault 4. Voltage enabled 6. Invalid 1. Valid When valid, it means that the servo is enabled. 9. Not faulty 1. Faulty 0. Invalid 1. Valid When valid, it means that the servo can be enabled. 5. Quick stop 0. Quick stop is valid 1. Quick stop is valid 0. Invalid 1. Quick stop is invalid 1. Quick stop is invalid 6. Switch on disabled 1. Valid When valid, it means that the servo cannot be enabled. 7. Alarm 1. Valid When valid, it means that the servo cannot be enabled. 9. Remote control 1. Valid When valid is near that the servo cannot be enabled. 1. Valid When valid is near that the servo cannot be enabled. 1. Valid 1. Valid 1. Valid 1. Valid When valid, it means that the servo cannot be enabled. 1. Spots in service cannot be enabled. 1. Spots in service cannot be enabled. 1. Valid When valid, it means that the controlword is in effect. 60400010h bit 8 (pause)=0. 0. Position is reached 1. Position is reached 60400010h bit 8 (pause)=1, 0. Deceleration in progress 1. Speed-0 1. Speed-0 1. Interpolation position mode is invalid 1. Interpolation position mode is invalid 1. Interpolation position mode is valid 1. Interpolation position mode is valid 1. Haming completed 1. Homing completed 1. Homing completed 5. Deceleration in progress 1. Speed-0 1. Invalid 1. Haming completed 5. Invalid bits will be stored after a successful homing (power-down holding), and the stored value can be cleared by setting P20.06 to 7.			
When valid, it means that the servo can be enabled. O Invalid 1 valid When valid, it means that the servo is enabled. 3 Servo fault 1 valid When valid, it means that the servo is enabled. 3 Voltage enabled 1 valid When valid, it means that the servo can be enabled. Voltage enabled 1 valid When valid, it means that the servo can be enabled. O Quick stop is valid 1 Quick stop is invalid Switch on disabled 1 valid When valid, it means that the servo cannot be enabled. Alarm 1 valid When valid, it means that the servo cannot be enabled. O Invalid 1 valid When valid, it means that the servo cannot be enabled. Permote control 1 valid When valid, it means that the controlword is in effect. 60400010h bit 8 (pause)=0, 0 Position is not reached 1 Position is reached 60400010h bit 8 (pause)=1, 0 Deceleration in progress 1 Speed=0 1 Soft limit is reached 1 Soft limit is reached 1 Soft limit is reached 1 Interpolation position mode status 1 Pmode reserved Unavailable 1 Interpolation position mode is invalid 1 Interpolation position mode is valid interpolation position mode is valid 1 Interpolation position mode is valid 1 Interpolation position mode is valid 1 Interpolation position mode is valid interpolation position mode is valid interpolation position mode is valid 1 Interpolation position mode is valid			
0 Invalid 1 Valid When valid, it means that the servo is enabled. 3 Servo fault 0 Invalid When valid, it means that the servo is enabled. 1 Valid Voltage enabled 1 Valid When valid, it means that the servo can be enabled. 5 Quick stop 0 Quick stop is valid 1 Quick stop is valid 1 Quick stop is invalid 6 Switch on disabled 1 Valid When valid, it means that the servo cannot be enabled. 7 Alarm 8 Manufacturer customization Unavailable 9 Remote control 1 Valid When valid, it means that the servo cannot be enabled. 9 Remote control 1 Invalid 2 Interpolation position mode status 1 Interpolation position mode status 1 Interpolation position mode status 1 Interpolation position mode is unalid 1 Interpolation position mode is unalid 1 Interpolation position mode is unalid 1 Interpolation position mode is valid in the might of the hexadecimal value of P09 14 to 2, the value of bit15 will be stored after a successful homing decimal value of P09 14 to 2, the value of bit15 will be stored after a successful homing	1	Switched on	
2 Operation enabled 1: Valid When valid, it means that the servo is enabled. 3 Servo fault 1: Faulty 0: Invalid 1: Valid When valid, it means that the servo can be enabled. 5 Quick stop 0: Quick stop is valid 1: Quick stop is valid 1: Quick stop is invalid 6 Switch on disabled 1: Valid When valid, it means that the servo can be enabled. 7 Alarm 1:			
When valid, it means that the servo is enabled. 3 Servo fault 1. Faulty 1. Faulty 2. Invalid 4 Voltage enabled 1. Valid When valid, it means that the servo can be enabled. 5 Quick stop 1. Quick stop is valid 1. Valid When valid, it means that the servo can be enabled. 6 Switch on disabled 1. Valid When valid, it means that the servo cannot be enabled. 7 Alarm 8 Manufacturer customization Unavailable 9 Remote control 1. Valid When valid, it means that the controlword is in effect. 60400010h bit 8 (pause)=0, 0. Position is not reached 60400010h bit 8 (pause)=1, 0. Deceleration in progress 1. Speed=0 11 Internal soft limit status 1. Soft limit is reached 1. Soft limit is reached 1. Soft limit is reached 1. Interpolation position mode status 1. Interpolation position mode is a linterpolation position mode is invalid 1. Interpolation position mode is unavailable 14 Manufacturer customization Unavailable 15 Homing completed For absolute value system, after setting the second digit from the right of the hexadecimal value of P09.14 to 2, the value of bit15 will be stored after a successful homing			
3 Servo fault 0: Not faulty 1: Faulty 0: Invalid 4 Voltage enabled 1: Valid When valid, it means that the servo can be enabled. 5 Quick stop 0: Quick stop is valid 1: Quick stop is invalid 6 Switch on disabled 1: Valid When valid, it means that the servo can be enabled. 7 Alarm 8 Manufacturer customization 0: No alarm 1: Alarm 8 Manufacturer customization 0: Invalid 9 Remote control 1: Valid When valid, it means that the controlword is in effect. 0: Invalid 1: Valid When valid, it means that the controlword is in effect. 0: Position is not reached 1: Position is reached 1: Position is reached 0: Position in progress 1: Speed=0 0: Soft limit is not reached 1: Soft limit is reached 1: Soft limit is reached 1: Interpolation position mode status 1: Interpolation position mode is invalid 1: Interpolation position mode is invalid 1: Interpolation position mode is valid 1: Homing completed For absolute value system, after setting the second digit from the right of the hexadecimal value of P09.14 to 2, the value of bit15 will be stored after a successful homing	2	Operation enabled	1: Valid
1: Faulty 0: Invalid 1: Valid When valid, it means that the servo can be enabled. 5: Quick stop 0: Quick stop is valid 1: Quick stop is invalid 0: Invalid 1: Valid When valid, it means that the servo can be enabled. 7: Alarm 8: Manufacturer customization Unavailable 0: Invalid 1: Valid When valid, it means that the servo cannot be enabled. 9: Remote control Unavailable 0: Invalid When valid, it means that the controlword is in effect. 60400010h bit 8 (pause)=0, 0: Position is reached 1: Position is reached 1: Position is reached 1: Soft limit is not reached 1: Soft limit is reached 1: Soft limit is not reached 1: Soft limit is reached 1: Soft limit is reached 1: Soft limit is reached 1: Soft limit i			When valid, it means that the servo is enabled.
1: Faulty 0: Invalid 1: Valid When valid, it means that the servo can be enabled. 5: Quick stop 1: Quick stop is valid 1: Quick stop is invalid 6: Switch on disabled 1: Valid When valid, it means that the servo can be enabled. 6: Switch on disabled 1: Valid When valid, it means that the servo cannot be enabled. 7: Alarm 8: Manufacturer customization Unavailable 9: Remote control 1: Valid When valid, it means that the controlword is in effect. 60400010h bit 8 (pause)=0, 0. Position is not reached 1: Position is not reached 1: Position is reached 60400010h bit 8 (pause)=1, 0. Deceleration in progress 1: Speed=0 0: Soft limit is not reached 1: Soft limit is not reached 1: Soft limit is not reached 1: Soft limit is reached 1: Soft limit is reached 1: Soft limit is not rea	3	Senvo fault	0: Not faulty
4 Voltage enabled 1: Valid When valid, it means that the servo can be enabled. 6: Quick stop 1: Quick stop is valid 1: Quick stop is invalid 6: Switch on disabled 1: Valid When valid, it means that the servo cannot be enabled. 7: Alarm 8: Manufacturer customization 1: Alarm 8: Manufacturer customization 1: Valid When valid, it means that the servo cannot be enabled. 9: Remote control 1: Valid When valid, it means that the controlword is in effect. 60400010h bit 8 (pause)=0, 0: Position is not reached 1: Position is reached 60400010h bit 8 (pause)=1, 0: Deceleration in progress 1: Speed=0 11 Internal soft limit status 12 Interpolation position mode status 13 IP mode reserved Unavailable 14 Manufacturer customization Unavailable 15 Homing completed 16 Por absolute value system, after setting the second digit from the right of the hexadecimal value of P09.14 to 2, the value of bit15 will be stored after a successful homing		oci vo idalit	1: Faulty
When valid, it means that the servo can be enabled. 0: Quick stop is valid 1: Quick stop is invalid 0: Invalid 1: Valid When valid, it means that the servo cannot be enabled. 7 Alarm 0: No alarm 1: Alarm 8 Manufacturer customization Unavailable 0: Invalid When valid, it means that the servo cannot be enabled. 9 Remote control Unavailable 0: Invalid When valid, it means that the controlword is in effect. 60400010h bit 8 (pause)=0, 0: Position is not reached 1: Position is reached 60400010h bit 8 (pause)=1, 0: Deceleration in progress 1: Speed=0 11 Internal soft limit status 1: Soft limit is reached 1: Interpolation position mode status 1: Soft limit is reached 1: Interpolation position mode status 1: Soft limit is reached 1: Interpolation position mode is valid 1: Interpolation position mode is valid 1: Interpolation position mode is valid 1: Homing completed For absolute value system, after setting the second digit from the right of the hexadecimal value of P09.14 to 2, the value of bit15 will be stored after a successful homing			0: Invalid
5 Quick stop 0: Quick stop is valid 1: Quick stop is invalid 0: Invalid 1: Valid When valid, it means that the servo cannot be enabled. 7 Alarm 0: No alarm 1: Alarm 8 Manufacturer customization Unavailable 9 Remote control 1: Valid When valid, it means that the servo cannot be enabled. 0: Invalid 1: Valid When valid, it means that the controlword is in effect. 60400010h bit 8 (pause)=0, 0: Position is not reached 1: Position is reached 60400010h bit 8 (pause)=1, 0: Deceleration in progress 1: Speed=0 11 Internal soft limit status 1: Soft limit is not reached 1: Soft limit is not reached 1: Soft limit is not reached 1: Interpolation position mode status 1: Interpolation position mode status 1: Interpolation position mode is invalid 1: Interpolation position mode is valid 14 Manufacturer customization Unavailable 0: Invalid 1: Homing completed For absolute value system, after setting the second digit from the right of the hexadecimal value of P09.14 to 2, the value of bit15 will be stored after a successful homing	4	Voltage enabled	1: Valid
1. Quick stop 1. Quick stop is invalid 0. Invalid 1. Valid When valid, it means that the servo cannot be enabled. 7. Alarm 1. Alarm 8. Manufacturer customization Unavailable 9. Remote control 1. Valid When valid, it means that the controlword is in effect. 60400010h bit 8 (pause)=0, 0. Position is not reached 1. Position is reached 60400010h bit 8 (pause)=1, 0. Deceleration in progress 1. Speed=0 11. Internal soft limit status 12. Interpolation position mode status 13. IP mode reserved Unavailable 14. Manufacturer customization Unavailable 15. Homing completed For absolute value system, after setting the second digit from the right of the hexadecimal value of P09.14 to 2, the value of bit15 will be stored after a successful homing			When valid, it means that the servo can be enabled.
1. Quick stop is invalid 0. Invalid 1. Valid When valid, it means that the servo cannot be enabled. 7. Alarm 0. No alarm 1. Alarm 8. Manufacturer customization Unavailable 0. Invalid 1. Valid When valid, it means that the controlword is in effect. 60400010h bit 8 (pause)=0, 0. Position is not reached 1. Position is reached 60400010h bit 8 (pause)=1, 0. Deceleration in progress 1. Speed=0 11. Internal soft limit status 12. Interpolation position mode status 13. IP mode reserved Unavailable 14. Manufacturer customization Unavailable 0. Invalid 1. Homing completed For absolute value system, after setting the second digit from the right of the hexadecimal value of P09.14 to 2, the value of bit15 will be stored after a successful homing	E	Quick stop	0: Quick stop is valid
6 Switch on disabled 1: Valid When valid, it means that the servo cannot be enabled. 7 Alarm 0: No alarm 1: Alarm 8 Manufacturer customization Unavailable 9 Remote control 1: Valid When valid, it means that the controlword is in effect. 60400010h bit 8 (pause)=0, 0: Position is not reached 1: Position is reached 60400010h bit 8 (pause)=1, 0: Deceleration in progress 1: Speed=0 11 Internal soft limit status 0: Interpolation position mode status 12 Interpolation position mode status 13 IP mode reserved Unavailable 14 Manufacturer customization Unavailable 15 Homing completed For absolute value system, after setting the second digit from the right of the hexadecimal value of P09.14 to 2, the value of bit15 will be stored after a successful homing	5	Quick stop	1: Quick stop is invalid
When valid, it means that the servo cannot be enabled. 7 Alarm 8 Manufacturer customization 9 Remote control 1: Valid When valid, it means that the controlword is in effect. 60400010h bit 8 (pause)=0, 0: Position is not reached 1: Position is reached 60400010h bit 8 (pause)=1, 0: Deceleration in progress 1: Speed=0 11 Internal soft limit status 12 Interpolation position mode status 13 IP mode reserved Unavailable 14 Manufacturer customization Unavailable 15 Homing completed For absolute value system, after setting the second digit from the right of the hexadecimal value of P09.14 to 2, the value of bit15 will be stored after a successful homing			0: Invalid
7 Alarm 8 Manufacturer customization 9 Remote control 10 Position arrival 11 Internal soft limit status 12 Interpolation position mode status 13 IP mode reserved 14 Manufacturer customization 15 Homing completed 16 Navailable 17 O: Invalid 18 (Pause) = 0, 19 O: Position is not reached 10 Position is reached 60400010h bit 8 (pause) = 1, 9 Deceleration in progress 1: Speed = 0 1: Soft limit is not reached 1: Soft limit is reached 1: Soft limit is reached 1: Interpolation position mode is invalid 1: Interpolation position mode is valid 1: Homing completed 1: Homing completed 1: Homing completed 1: Possition is reached 1: Soft limit is not reached 1: Soft limit is not reached 1: Soft limit is reached 1: Interpolation position mode is invalid 1: Interpolation position mode is valid 1: Interpolation position mode is valid 1: Homing completed 1: Homing completed For absolute value system, after setting the second digit from the right of the hexadecimal value of P09.14 to 2, the value of bit15 will be stored after a successful homing	6	Switch on disabled	1: Valid
7 Alarm 1: Alarm 8 Manufacturer customization Unavailable 0: Invalid 1: Valid When valid, it means that the controlword is in effect. 60400010h bit 8 (pause)=0, 0: Position is not reached 1: Position is reached 60400010h bit 8 (pause)=1, 0: Deceleration in progress 1: Speed=0 0: Soft limit is not reached 1: Soft limit is reached 1: Interpolation position mode status 1: Interpolation position mode is invalid 1: Interpolation position mode is valid 1: Interpolation position mode is valid 1: Interpolation position mode is valid 1: Homing completed 2: Interpolation position mode is valid 3: Homing completed 4: Homing completed 5: Interpolation position mode is valid 5: Homing completed 6: Interpolation position mode is valid 6: Interpolation position mode is valid 7: Homing completed 7: Interpolation position mode is valid 7: Homing completed 7: Interpolation position mode is valid 7: Homing completed 7: Interpolation position mode is valid 7: Homing completed 7: Interpolation position mode is valid 7: Homing completed 7: Interpolation position mode is valid 7: Homing completed 7: Interpolation position mode is valid 7: Homing completed 7: Homing completed 7: Interpolation position mode is valid 7: Homing completed 7: Homing completed 7: Interpolation position mode is valid 7: Homing completed 7: Interpolation position mode is valid 8: Interpolation position mode is valid 9: Interpolatio			When valid, it means that the servo cannot be enabled.
1: Alarm Manufacturer customization Unavailable	7	A1	0: No alarm
9 Remote control 1: Valid When valid, it means that the controlword is in effect. 60400010h bit 8 (pause)=0, 0: Position is not reached 1: Position is reached 60400010h bit 8 (pause)=1, 0: Deceleration in progress 1: Speed=0 11 Internal soft limit status 12 Interpolation position mode status 13 IP mode reserved Unavailable 14 Manufacturer customization Unavailable 15 Homing completed For absolute value system, after setting the second digit from the right of the hexadecimal value of P09.14 to 2, the value of bit15 will be stored after a successful homing	/	Aldiffi	1: Alarm
Position arrival Position is not reached 1: Position is reached 60400010h bit 8 (pause)=1, 0: Deceleration in progress 1: Speed=0 Discording in the progress 1: Soft limit is not reached 1: Soft limit is reached 1: Interpolation position mode is invalid 1: Interpolation position mode is valid 1: Homing completed Position is not reached 1: Soft limit is not reached 1: Soft limit	8	Manufacturer customization	Unavailable
When valid, it means that the controlword is in effect. 60400010h bit 8 (pause)=0, 0: Position is not reached 1: Position is reached 60400010h bit 8 (pause)=1, 0: Deceleration in progress 1: Speed=0 11 Internal soft limit status 0: Soft limit is not reached 1: Soft limit is reached 1: Interpolation position mode status 1: Interpolation position mode is invalid 1: Interpolation position mode is valid 13 IP mode reserved 14 Manufacturer customization 15 Homing completed 16 For absolute value system, after setting the second digit from the right of the hexadecimal value of P09.14 to 2, the value of bit15 will be stored after a successful homing			0: Invalid
60400010h bit 8 (pause)=0, 0: Position is not reached 1: Position is reached 60400010h bit 8 (pause)=1, 0: Deceleration in progress 1: Speed=0 11	9	Remote control	1: Valid
10 Position arrival 11 Position is reached 12 Position is reached 13 Internal soft limit status 14 Interpolation position mode status 15 Interpolation position mode status 16 Interpolation position mode status 17 Interpolation position mode status 18 IP mode reserved 19 Interpolation position mode status 19 IP mode reserved 10 Interpolation position mode is invalid 11 Interpolation position mode is valid 11 Interpolation position mode is valid 12 Interpolation position mode is valid 13 IP mode reserved 14 Interpolation position mode is valid 15 Interpolation position mode is valid 16 Interpolation position mode is valid 17 Interpolation position mode is valid 18 Interpolation position mode is valid 19 Interpolation position mode is valid 10 Interpolation position mode is valid 11 Interpolation position mode is valid 12 Interpolation position mode is valid 13 IP mode reserved 14 Interpolation position mode is valid 15 Interpolation position mode is valid 16 Interpolation position mode is invalid 17 Interpolation position mode is valid 18 Interpolation position mode is valid 19 Interpolation position mode is valid 10 Interpolation position mode is invalid 11 Interpolation position mode is invalid 12 Interpolation position mode is valid 13 IP mode reserved 14 Interpolation position mode is invalid 15 Interpolation position mode is invalid 16 Interpolation position mode is invalid 17 Interpolation position mode is valid 18 Interpolation position mode is invalid 19 Interpolation position mode is invalid 10 Interpolation position mode is invalid 11 Interpolation position mode is invalid 12 Interpolation position mode is invalid 13 Interpolation position mode is invalid 14 Interpolation position mode is invalid 15 Interpolation position mode is invalid 16 Interpolation position mode is invalid 17 Interpolation position mode is invalid 18 Interpolation position mode is invalid 19 Interpolation position mode is invalid 19 Interpolation position mode is invalid 10 Inte			When valid, it means that the controlword is in effect.
1: Position is reached 60400010h bit 8 (pause)=1, 0: Deceleration in progress 1: Speed=0 11 Internal soft limit status 0: Soft limit is not reached 1: Soft limit is reached 1: Soft limit is reached 1: Soft limit is reached 1: Interpolation position mode status 1: Interpolation position mode is invalid 1: Interpolation position mode is valid 1: Homing completed For absolute value system, after setting the second digit from the right of the hexadecimal value of P09.14 to 2, the value of bit15 will be stored after a successful homing		Position arrival	60400010h bit 8 (pause)=0,
10 Position arrival 60400010h bit 8 (pause)=1, 0: Deceleration in progress 1: Speed=0 11 Internal soft limit status 0: Soft limit is not reached 1: Soft limit is reached 1: Soft limit is reached 1: Interpolation position mode is invalid 1: Interpolation position mode is valid 1: Inter			0: Position is not reached
60400010h bit 8 (pause)=1, 0: Deceleration in progress 1: Speed=0 0: Soft limit is not reached 1: Soft limit is reached 1: Soft limit is reached 0: Interpolation position mode status 1: Interpolation position mode is invalid 1: Interpolation position mode is valid 1: Interpolation posi	10		1: Position is reached
1: Speed=0 1: Speed=0 0: Soft limit is not reached 1: Soft limit is reached 1: Soft limit is reached 1: Soft limit is reached 1: Soft limit is reached 1: Soft limit is reached 1: Interpolation position mode is invalid 1: Interpolation position mode is valid 1: Interpolation position mode is invalid 1: Interpolation position mode is invalid 1: Interpolation position mode is invalid 1: Interpolation position mode is valid 1: Interpol	10		60400010h bit 8 (pause)=1,
11 Internal soft limit status 12 Interpolation position mode status 13 IP mode reserved 14 Manufacturer customization 15 IP mode reserved 16 Unavailable 17 Unavailable 18 IP mode reserved 19 IP mode reserved 10 Interpolation position mode is invalid 11 Interpolation position mode is valid 12 Unavailable 13 IP mode reserved 14 Unavailable 15 Unavailable 16 IP mode reserved 17 Interpolation position mode is valid 18 IP mode reserved 19 Interpolation position mode is valid 19 Interpolation position mode is valid 10 Interpolation position mode is invalid 11 Interpolation position mode is invalid 12 Interpolation position mode is invalid 13 IP mode reserved 14 IP mode reserved 15 Interpolation position mode is invalid 16 IP mode reserved 17 Interpolation position mode is valid 18 IP mode reserved 19 IP mode reserved 10 Interpolation position mode is invalid 19 IP mode reserved 10 Interpolation position mode is invalid 10 IP mode reserved 11 Interpolation position mode is invalid 12 Interpolation position mode is invalid 13 IP mode reserved 14 Interpolation position mode is invalid 15 Interpolation position mode is invalid 16 IP mode reserved 17 Interpolation position mode is invalid 18 IP mode reserved 19 IP mode reserved 10 IP mode reserved 10 IP mode reserved 10 IP mode reserved 11 Interpolation position mode is invalid 12 Interpolation position mode is invalid 13 IP mode reserved 14 IP mode reserved 15 Interpolation position mode is invalid 18 IP mode reserved 19 IP mode reserved 10 IP mode reserved 10 IP mode reserved 11 IP mode reserved 12 IP mode reserved 13 IP mode reserved 14 IP mode reserved 15 IP mode reserved 16 IP mode reserved 17 IP mode reserved 18 IP mode reserved 18 IP mode reserved 19 IP mode reserved 19 IP mode reserved 10 IP mode reserved 10 IP mode reserved 10 IP mode reserved 11 IP mode reserved 12 IP mode reserved 13 IP mode reserved 14 IP mode reserved 15 IP mode reserved 16 IP mode reserved 17 IP mode reserved 18 IP m			0: Deceleration in progress
1: Soft limit is reached 1: Soft limit is reached 1: Soft limit is reached 1: Interpolation position mode is invalid 1: Interpolation position mode is valid 1: Interpolation position mode is invalid 1: I			1: Speed=0
1: Soft limit is reached 1: Soft limit is reached 1: Soft limit is reached 1: Interpolation position mode is invalid 1: Interpolation position mode is valid 1: Interpolation position mode is invalid 1: Interpolation position mode is valid 1: Interpolation position mode is valid 1: Interpolation position mode is valid 1: Interpolation position mode is invalid 1: Interpolation position mode is invalid 1: Interpolation position mode is valid 1: Interpolation position mode is va	11		0: Soft limit is not reached
12 Interpolation position mode status 1: Interpolation position mode is valid 13 IP mode reserved Unavailable 14 Manufacturer customization Unavailable 0: Invalid 1: Homing completed For absolute value system, after setting the second digit from the right of the hexadecimal value of P09.14 to 2, the value of bit15 will be stored after a successful homing	11	Internal soft limit status	1: Soft limit is reached
1: Interpolation position mode is valid 13 IP mode reserved Unavailable 14 Manufacturer customization Unavailable 0: Invalid 1: Homing completed For absolute value system, after setting the second digit from the right of the hexadecimal value of P09.14 to 2, the value of bit15 will be stored after a successful homing	10		0: Interpolation position mode is invalid
14 Manufacturer customization Unavailable 0: Invalid 1: Homing completed For absolute value system, after setting the second digit from the right of the hexadecimal value of P09.14 to 2, the value of bit15 will be stored after a successful homing	1Z	Interpolation position mode status	1: Interpolation position mode is valid
0: Invalid 1: Homing completed Homing completed For absolute value system, after setting the second digit from the right of the hexadecimal value of P09.14 to 2, the value of bit15 will be stored after a successful homing	13	IP mode reserved	Unavailable
1: Homing completed Homing completed For absolute value system, after setting the second digit from the right of the hexadecimal value of P09.14 to 2, the value of bit15 will be stored after a successful homing	14	Manufacturer customization	Unavailable
Homing completed For absolute value system, after setting the second digit from the right of the hexadecimal value of P09.14 to 2, the value of bit15 will be stored after a successful homing			0: Invalid
decimal value of P09.14 to 2, the value of bit15 will be stored after a successful homing			1: Homing completed
	15	Homing completed	
			decimal value of P09.14 to 2, the value of bit15 will be stored after a successful homing

5.6.3 Object dictionary list in the IP mode

Table 5-21 Object dictionary related to the IP mode

Index	Sub-index	Name	Access	Data type	Default
603Fh		Error code	ro	unsigned16	0
6040h		Controlword	rw	unsigned16	0
6041h		Statusword	ro	unsigned16	0
6060h		Modes of operation	rw	integer8	0
6061h		Modes of operation display	ro	integer8	0

6062h		Position demand value	ro	integer32	0
6063h		Position actual internal value	ro	integer32	0
6064h		Position actual value	ro	integer32	0
6065h		Following error window	rw	unsigned32	1000000
6067h		Position window	rw	unsigned32	100
6068h		Position window time	rw	unsigned16	1
606Bh		Velocity demand value	ro	integer32	0
606Ch		Velocity actual value	ro	integer32	0
607Ch		Home offset	rw	integer32	0
607Dh	01h	Min. software position limit	rw	integer32	-2147483648
	02h	Max. software position limit	rw	integer32	2147483647
60C1h	01h	Torque offset	rw	integer32	0
60C2h	01h	Interpolation time period	rw	unsigned8	1
	02h	Interpolation time index	rw	integer8	-3
60F4h		Following error actual value	ro	integer32	0
60FCh		Position demand internal value	ro	integer32	0

5.6.4 Example of using the IP mode

1. Set the servo drive parameters

Table 5-22 Servo drive parameter configuration for running interpolation position mode

Parameter address	Setting value	Description
P00.01(2100-02h)	7	CANopen mode
P09.00(2109-01h)	1	Slave address (default 1)
P09.13(2109-0Eh)	5	Baud rate (default 500K)

- 2. The host device connects the servo drive and sets the CANopen communication parameters and interpolation mode related parameters (transmission mode, interpolation cycle, axis parameters).
 - 3. Run the host device

Table 5-23 The startup and operation procedure of the IP mode

Address	Name	Value setting (decimal value)
60600008h	Modes of operation	7
60C10120h	Target interpolation position	Set by the host device
/0/00010l-	Enable	Any number \rightarrow 6 \rightarrow 7 \rightarrow 31
60400010h Controlword	Alarm clearing	Any number \rightarrow 128 (valid at the rising edge)
Controlword	Enable interpolation position mode	Enable instruction setting
60C20108h	Interpolation time period	≥ 1 (Unit: ms)

5.7 Electronic gear ratio

Two gear ratios can be selected by switching the second digit from the right of P09.13 (2109-0Eh):

When the second digit from the right of P09.13 is set to 0, the electronic gear ratio is set by P00.08 or P00.10/P00.12, at which time 6091h and 6092h no longer function. The electronic gear can be replaced by setting the number of instruction pulses required for each motor rotation by P00.08. If the value of P00.08 is 0, then the electronic gear ratio P00.10/P00.12 is used.

When the second digit from the right of P09.13 is set to 1, the electronic gear ratio is set by 6091h and 6092h, and at this

time, P00.08 and P00.10/P00.12 no longer work, and the electronic gear ratio calculation formula is as follows:

	608Fh_01(Motor encoder resolution)		6091h_01(Number of motor revolution)
608F*6091/6092 =	608Fh_02(Encoder resolution corresponds to the number of motor revolution)		6091h_02(Number of drive axis revolution)
(Electronic gear ratio)	6092h_01(Host device	setti	ng value)
	6092h_02(Number of driv	/e axi	s revolution)

Example: 17bit encoder motor 608F = 131072, if the host device needs to send 10000 instructions corresponding to the drive axis to rotate once, set the object 6091h for 1:1, 6092h for 10000:1.

5.8 Instruction unit

Velocity instruction unit:

The third digit from the right of the hexadecimal value of P09.13 (2109-0Eh) determines the velocity instruction unit.

- 0: RPM
- 1: User instruction/s

◆ Acceleration/deceleration instruction unit:

The fourth digit from the right of the hexadecimal value of P09.13 (2109-0Eh) determines the acceleration time.

- 0: ORPM-1000RPM acceleration time ms
- 1: Instruction/s^2

Chapter 6 Parameters

6.1	List of parameters
6.2	Parameter description145
	P00 Basic setting145
	P01 Gain tuning149
	P02 Vibration suppression
	P03 Speed & torque control158
	P04 Digital input and output162
	P05 Analog input and output169
	P06 Expansion parameter
	P07 Auxiliary function179
	P08 Internal position instruction
	P09 Communication setting192
	P10 CANOpen parameter group 1195
	P11 CANOpen parameter group 2198
	P12 CANOpen parameter group 3201
	P13 CANOpen parameter group 4204
	P17 Expansion position control function205
	P18 Motor model
	P20 Key and communication control interface207
	P21 Status parameters209
	Digital input (DI) function definition table214
	Digital output (DO) function definition table215
6.3	Bus-related function code217

6.1 List of parameters

Relevant mode:

P: position control S: speed control T: torque control

The symbol "●" indicates applicable in this mode; and "—" indicates inapplicable in this mode.

Group N	lo	Name		Relevant mode		
Group N	10.			S	Т	
	00	Motor rotation positive direction definition	•	•	•	
	01	Control mode selection	•	•	•	
	02	Real-time auto-tuning mode	•	•	•	
	03	Rigidity grade setting	•	•	•	
	04	Inertia ratio	•	•	•	
	14	Pulse number per turn of motor rotation (32-bit)	•	_	_	
	16	Pulse output positive direction definition	•	•	•	
	17	Pulse output OZ polarity	•	_	_	
	18	Pulse output function selection	•	_	_	
P00	19	Overlarge position deviation threshold (32-bit)	•	•	•	
	21	Braking resistor setting	•	•		
	22	External resistor power capacity	•	•	•	
	23	External resistor value	•	•	•	
	24	External resistor heating time constant		•	•	
	25	Regenerative voltage point		•	•	
	26	Step value setting		_	_	
	27	High-speed pulse train pattern	•	_	_	
	28	Modulus mode low bit (32-bit)	•	_	_	
	30	Modulus mode high bit (32-bit)	•			
	00	Position loop gain 1	•	_	_	
	01	Speed loop gain 1	•	•	_	
	02	Speed loop integral time 1	•		_	
	03	Speed detection filtering 1	•	•		
	04	Torque instruction filtering 1	•	•	•	
	05	Position loop gain 2	•	_		
	06	Speed loop gain 2				
	07	Speed loop integral time 2				
	08	Speed detection filtering 2				
	09	Torque instruction filtering 2				
	10	Speed regulator PDFF coefficient				
P01	11	Speed feed-forward control selection		_		
	12	Speed feed-forward gain		_		
	13	Speed feed-forward filtering time	•	_		
	14	Torque feed-forward control selection	•			
	15	Torque feed-forward gain				
	16	Torque feed-forward filtering time				
	17	DI function GAIN—SWITCH action switching selection				
	18	Position control switching mode		_	-	
	19	Position control switching delay				
	20	Position control switching class		_		
	21	Position control gain switching hysteresis		_	_	

		Name		Relevant mode			
Group No.				S	Т		
	22	Position gain switching time	•	-	_		
	23	Speed control switching mode	_		_		
	24	Speed control switching delay	_		_		
	25	Speed control switching class	_		_		
	26	Speed control switching hysteresis	_		_		
	27	Torque control switching mode	_	_			
P01	28	Torque control switching delay	_	_			
	29	Torque control switching class	_	_			
	30	Torque control switching hysteresis	_	_	•		
	31	Observer enabled	•		•		
	32	Observer cut-off frequency					
	33	Observer phase compensation time	•		•		
	34	Observer inertia coefficient	•		•		
	00	Position instruction smoothing filter	•	_	_		
	01	Position instruction FIR filter		_	_		
	02	Adaptive filter mode	•		•		
	03	Adaptive filter load mode	•				
	04	The first notch filter frequency (manual)					
	05	The first notch filter width	•		•		
	06	The first notch filter depth					
	07	The second notch filter frequency (manual)					
	08	The second notch filter width	•		•		
	09	The second notch filter depth	•	•	•		
	10	The third notch filter frequency	•	•	•		
	11	The third notch filter width	•		•		
	12	The third notch filter depth	•	•	•		
P02	13	The fourth notch filter frequency	•	•	•		
	14	The fourth notch filter width	•	•	•		
	15	The fourth notch filter depth	•		•		
	19	Position instruction FIR filter 2	•		_		
	20	The first vibration damping frequency	•	•	_		
	21	The first vibration damping filtering setting	•	•	_		
	22	The second vibration damping frequency	•	•	_		
	23	The second vibration damping filtering setting	•	•	_		
	31	Resonance point 1 frequency	•	•	•		
	32	Resonance point 1 bandwidth	•	•	•		
	33	Resonance point 1 amplitude	•	•	•		
	34	Resonance point 2 frequency	•	•	•		
	35	Resonance point 2 bandwidth	•	•	•		
	36	Resonance point 2 amplitude	•	•	•		
	00	Speed instruction source		•			
	03	Speed instruction setting value		•			
	04	JOG speed setting	_	•	_		
P03	08	Torque limit source	•	•	_		
	09	Internal forward torque limit	•	•			
	10	Internal reverse torque limit	•	•			
	11	External forward torque limit	•	•	_		

Crown No.		Name		Relevant mode			
Group No.		Name	Р	S	Т		
	12	External reverse torque limit	•	•	_		
	14	Acceleration time 1	_	•	•		
	15	Deceleration time 1	_	•			
	16	Acceleration time 2	_	•			
	17	Deceleration time 2	_	•			
	19	Zero-speed clamp function	_	•			
	20	Zero-speed clamp threshold value	_	•	•		
	22	Torque instruction source	_	_	•		
	25	Torque instruction key set value	_	_	•		
	26	Speed limit source under torque control	_	_	•		
	27	Internal positive speed limit	_	_	•		
	28	Internal negative speed limit	_	_	•		
	29	Hard limit torque limit	•	-	_		
	30	Hard limit torque limit detection time	•	_	_		
	31	Speed instruction number selection mode	_	•	_		
	32	Acceleration time number for speed instruction from segment 1 to 8	_	•	_		
	33	Deceleration time number for speed instruction from segment 1 to 8	_	•	_		
P03	34	Acceleration time number for speed instruction from segment 9 to 16	_	•	-		
	35	Deceleration time number for speed instruction from segment 9 to 16	_		-		
	36	Segment 1 speed	_	•	_		
	37	Segment 2 speed	_	•	-		
	38	Segment 3 speed	_		-		
	39	Segment 4 speed	_	•	_		
	40	Segment 5 speed	_	•	_		
	41	Segment 6 speed	_	•	_		
	42	Segment 7 speed	_	•	_		
	43	Segment 8 speed	_	•	_		
	44	Segment 9 speed	_	•	_		
	45	Segment 10 speed	_	•	_		
	46	Segment 11 speed	_	•	_		
	47	Segment 12 speed	_	•			
	48	Segment 13 speed	_	•	_		
	49	Segment 14 speed	_	•	_		
	50	Segment 15 speed	_	•	_		
	51	Segment 16 speed	_	•	_		
	00	Normal DI filter selection	•	•	•		
	01	DI1 terminal function selection	•	•	•		
	02	DI2 terminal function selection	•	•			
	03	DI3 terminal function selection	•	•	•		
	04	DI4 terminal function selection	•	•	•		
P04	05	DI5 terminal function selection	•	•			
F04	06	DI6 terminal function selection	•	•			
	07	DI7 terminal function selection	•	•			
	08	DI8 terminal function selection	•	•			
	09	DI9 terminal function selection	•	•	•		
	11	DI1 terminal logic selection	•	•			
	12	DI2 terminal logic selection	•	•	•		

Corres No.		Nama		Relevant mode		
Group No.		Name	Р	S	Т	
	13	DI3 terminal logic selection			•	
	14	DI4 terminal logic selection				
	15	DI5 terminal logic selection				
	16	DI6 terminal logic selection	•			
	17	DI7 terminal logic selection				
	18	DI8 terminal logic selection			•	
	19	DI9 terminal logic selection	•			
	21	DO1 terminal function selection				
	22	DO2 terminal function selection				
	23	DO3 terminal function selection				
	24	DO4 terminal function selection				
	25	DO5 terminal function selection		•		
	26	DO6 terminal function selection				
	27	DO7 terminal function selection				
	28	DO8 terminal function selection				
	29	DO9 terminal function selection				
	31	DO1 terminal logic level selection				
	32	DO2 terminal logic level selection				
	33	DO3 terminal logic level selection				
	34	DO4 terminal logic level selection				
	35	DO5 terminal logic level selection				
P04	36	DO6 terminal logic level selection				
	37	DO7 terminal logic level selection				
	38	DO8 terminal logic level selection				
	39	DO9 terminal logic level selection				
	41	FunINL signal unassigned status (HEX)				
	42	FunINH signal unassigned status (HEX)				
	43	Motor rotational signal (TGON) threshold				
	44	Speed conformity signal width	_		_	
	45	Speed specified value arrival				
	47	Positioning completion range				
	48	Positioning completion output setting		_		
	49	Positioning completion holding time		_		
	50	Positioning near range		_	-	
	51	Servo OFF delay time after holding brake taking action when speed is 0		-		
	52	Speed setting for holding brake to take action in motion				
	53	Waiting time for holding brake to take action in motion				
	54	OCZ output selection				
	55	Torque set value arrival				
	56	Torque arrival detection width				
	57	Z-phase pulse width adjustment				
	58	Zero-speed signal output threshold				
	00	Al1 minimum input				
	01	Setting value corresponding to the Al1 minimum input				
P05	02	Al1 maximum input				
103	03	Setting value corresponding to the Al1 maximum input				
	03	Al1 zero-point fine tuning			<u> </u>	
	04	Part 2010 Politic line turning				

			Rel	Relevant mode		
Group N	10.	Name	Р	S	Т	
	05	Al1 dead band setting	•			
	06	Al1 input filtering time	•			
	07	Al2 minimum input	•	•	•	
	08	Setting value corresponding to the AI2 minimum input	•	•	•	
	09	Al2 maximum input	•	•	•	
	10	Setting value corresponding to the AI2 maximum input	•	•	•	
	11	Al2 zero-point fine tuning	•	•	•	
	12	Al2 dead band setting	•	•	•	
	13	Al2 input filtering time	•	•	•	
P05	14	Al setting 100% speed	•	•	•	
P05	15	Al setting 100% torque	•	•	•	
	16	Al1 function selection	•	•	•	
	17	Al2 function selection	•	•	•	
	28	AO1 signal selection (need optional card)	•	•	•	
	29	AO1 voltage offset	•	•	•	
	30	AO1 multiplication	•	•	•	
	31	AO2 signal selection (need optional card)	•	•	•	
	32	AO2 voltage offset	•	•	•	
	33	AO2 multiplication	•	•	•	
	34	AO monitoring value type	•	•		
	00	Electronic gear numerator 2 (32-bit)	•	_	_	
	02	Electronic gear numerator 3 (32-bit)	•	_	_	
	04	Electronic gear numerator 4 (32-bit)	•	_	_	
	06	Position deviation clearing function	•	_		
	09	Electronic gear ratio switching delay	•	_		
	10	Potential energy load torque compensation	•	•		
	11	P06.10 storage options	•	•		
	18	The first type fault stop selection				
	19	Parameter identification rate	•	•	_	
	20	Parameter identification acceleration time	•	•		
	21	Parameter identification deceleration time	•	•		
	22	Parameter identification mode	•	•	_	
	23	Initial angle identification current limit	•	•	•	
P06	24	Instantaneous power failure protection	•	•	•	
	25	Instantaneous power failure deceleration time	•	•	•	
	26	Servo OFF stop mode selection	•	•		
	27	The second type fault stop mode selection	•	•		
	28	Over-travel input setting	•	•	•	
	29	Over-travel stop mode selection	•	•		
	30	Input power phase loss protection	•	•		
	31	Output power phase loss protection	•	•		
	32	Stop by emergency stop torque	•	•	<u> </u>	
	33	Tripping protection function	•	•		
	34	Overload warning value	•	•	<u> </u>	
	35	Motor overload protection coefficient	•	•	<u> </u>	
	36	Undervoltage protection point	•	•		
	37	Over-speed fault point	•	•	•	

Craun Na		Maria	Rel	Relevant mode		
Group No	O. 	Name	Р	S	Т	
	38	Maximum input pulse frequency	•	_	_	
	39	Short circuit to ground detection protection selection	•	•	•	
	40	Encoder interference detection delay	•	•		
	41	Input pulse filtering setting	•	_	_	
	42	Input pulse inhibition setting	•	_	_	
P06	43	Deviation clearing input setting	•	_		
1 00	44	Touch probe DI filtering setting	•		•	
	45	Overlarge speed deviation threshold	•	•	_	
	46	Torque saturation timeout duration	•	•		
	47	Absolute system setting	•	•	•	
	48	Encoder battery undervoltage threshold	•	•	•	
	49	High-speed pulse input filtering	•		•	
	00	Panel display option	•			
	01	Panel monitoring parameter setting 1	•			
	02	Panel monitoring parameter setting 2	•	•		
	03	Panel monitoring parameter setting 3	•			
	04	Panel monitoring parameter setting 4	•			
	05	Panel monitoring parameter setting 5	•			
	08	Function selection 1	•			
	09	Function selection 2	•			
	10	User password				
	11	Instant memory storage during power outage				
P07	12	User password screen-lock time				
	14	Fast deceleration time				
	16	Function selection 3				
	17	Resolution		_	_	
	19	Function selection 5	•			
	20	Function selection 6	•			
	21	Function selection 7	•			
	22	Function selection 8	•			
	23	Fault reset timing	•			
	24	Positive soft limit (32-bit)	•			
	26	Negative soft limit (32-bit)				
	00	Multi-segment preset position execution method	•	_	<u> </u>	
	01	Starting segment number		_		
	02	Ending segment number		_		
	03	Dealing of residual segments after pausing and restarting				
	04	Position instruction type		_		
	05	Waiting time unit				
	06	The first segment displacement (32-bit)				
P08	08	The first segment maximum speed		_		
	09	The first segment acceleration/deceleration time				
	10	Waiting time after the first segment completed		_	<u> </u>	
	11	The second segment displacement (32-bit)		_	_	
	13	The second segment maximum speed		_	_	
	14	The second segment acceleration/deceleration time		_	_	
		1		-	+ -	

Coorne No		Nama	Rel	Relevant mode		
Group No.		Name	Р	S	Т	
	16	The third segment displacement (32-bit)	•	_	_	
	18	The third segment maximum speed	•	_	_	
	19	The third segment acceleration/deceleration time	•	_	_	
	20	Waiting time after the third segment completed	•	_	_	
	21	The fourth segment displacement (32-bit)	•	_	_	
	23	The fourth segment maximum speed	•	-		
	24	The fourth segment acceleration/deceleration time	•	_	_	
	25	Waiting time after the fourth segment completed	•	_	_	
	26	The fifth segment displacement (32-bit)	•	_	_	
	28	The fifth segment maximum speed	•	_	_	
	29	The fifth segment acceleration/deceleration time	•	_	_	
	30	Waiting time after the fifth segment completed	•	_	_	
	31	The sixth segment displacement (32-bit)	•	_	T _	
	33	The sixth segment maximum speed		_	_	
	34	The sixth segment acceleration/deceleration time		_	<u> </u>	
	35	Waiting time after the sixth segment completed	•	_	<u> </u>	
	36	The seventh segment displacement (32-bit)		_	_	
	38	The seventh segment maximum speed	•	_	_	
	39	The seventh segment acceleration/deceleration time	•	_	<u> </u>	
	40	Waiting time after the seventh segment completed		_		
	41	The eighth segment displacement (32-bit)		_		
	43	The eighth segment maximum speed	•	_		
	44	The eighth segment acceleration/deceleration time		_	<u> </u>	
P08	45	Waiting time after the eighth segment completed	•	_	 	
	46	The ninth segment displacement (32-bit)	•	_		
	48	The ninth segment maximum speed	•			
	49	The ninth segment acceleration/deceleration time	•		 	
	50	Waiting time after the ninth segment completed	•		 -	
	51	The 10th segment displacement (32-bit)	•	-	 	
	53	The 10th segment maximum speed		-	 -	
	54	The 10th segment acceleration/deceleration time		_	 -	
	55	Waiting time after the 10th segment completed		_	 -	
	56	The 11th segment displacement (32-bit)		_	 -	
	58	The 11th segment maximum speed		_	 -	
	59	The 11th segment acceleration/deceleration time		-	 -	
	60	Waiting time after the 11th segment completed	•	-	-	
	61	The 12th segment displacement (32-bit)		_	-	
	63	The 12th segment displacement (32 bit) The 12th segment maximum speed		_	-	
	64	The 12th segment acceleration/deceleration time		_	-	
	65	Waiting time after the 12th segment completed		_	-	
				-	-	
	66	The 13th segment displacement (32-bit)	•	_	-	
	68	The 13th segment assolutation /decoloration time	•	_	-	
	69	The 13th segment acceleration/deceleration time	•	_	-	
	70	Waiting time after the 13th segment completed	•		-	
	71	The 14th segment displacement (32-bit)	•	-	-	
	73	The 14th segment maximum speed		_	1	

Group No.		Name	Rel	Relevant mode		
			Р	S	Т	
	75	Waiting time after the 14th segment completed	•	_	_	
	76	The 15th segment displacement (32-bit)	•	_	_	
	78	The 15th segment maximum speed	•	_		
	79	The 15th segment acceleration/deceleration time	•	_		
	80	Waiting time after the 15th segment completed	•	_		
	81	The 16th segment displacement (32-bit)	•	_	_	
	83	The 16th segment maximum speed	•	_	_	
	84	The 16th segment acceleration/deceleration time	•	_	_	
	85	Waiting time after the 16th segment completed	•	_		
P08	86	Position instruction interrupt execution setting	•	_		
	88	Homing start method	•	_		
	89	Homing mode	•	_	_	
	90	Limit switch and z-phase signal setting when homing		_	_	
	92	Origin search high speed		_	_	
	93	Origin search low speed	•	_	_	
	94	Acceleration/deceleration time during origin searching	•	_	_	
	95	Homing time limit		_	_	
	96	Origin offset (32-bit)		_	_	
	98	Mechanical origin offset (32-bit)		_	_	
	00	Servo axis address number		•		
	01	Modbus baud rate				
	02	Modbus data format				
	03	Communication timeout				
	04	Communication response delay				
	05	Communication DI enabling setting 1				
	06	Communication DI enabling setting 2				
	07	Communication DI enabling setting 3				
P09	08	Communication DI enabling setting 4				
	09	Communication DO enabling setting 1				
	10	Communication DO enabling setting 2				
	11	Communication instruction holding time				
	12	Enable AO function or CAN communication				
	13	Bus communication configuration 1				
	14	Bus communication configuration 2				
	15	Bus communication configuration 3				
P10	00	CANopen parameter group 1				
P11	00	CANopen parameter group 2				
P12	00	CANopen parameter group 3				
P13	00	CANopen parameter group 4				
	00	External encoder usage				
	01	External encoder pitch (32-bit)		_	-	
	03	Full-closed mixed deviation threshold(32-bit)		_	-	
	05	Mixed deviation counting setting		-	_	
P17	06	Mixed deviation counting setting Mixed vibration suppression gain		_		
	07	Mixed vibration suppression time constant		_	_	
	09	Full closed-loop speed feedback setting		_		
	07	I an closed loop speed recapack setting		-	-	

		Nama		Relevant mode			
Group N	0.	Name	Р	S	Т		
	13	External units for internal encoder count value (32-bit)	•	_	_		
	16	Position comparison output mode	•	_	_		
	17	The first position (32-bit)	•	_	_		
	19	The second position (32-bit)	•	_	_		
	21	The third position (32-bit)	•	_	_		
P17	23	The fourth position (32-bit)	•	_	_		
	25	Signal validity time 1	•	_	_		
	26	Signal effective time 2	•	_	_		
	27	Signal effective time 3	•	_	_		
	28	Signal effective time 4	•	_	_		
	29	Display delay	•	_	_		
P18	00	Motor model code	•	•	•		
P19	00	Drive model code	•	•	•		
	00	Key JOG trial	•	•	•		
	01	Fault reset	•	•	•		
	03	Parameter identification function	•	•	•		
	05	Analog input automatic offset adjustment	•	•	•		
P20	06	System initialization function	•	•	•		
P20	08	Communication operation instruction input	•	•	•		
	09	Communication operation status output	•	•	•		
	10	Communication setting DI input	•	•			
	11	Communication selection multi-segment instruction number	•	•	_		
	12	Communication starting homing	•	_	_		
	00	Servo status	•		•		
	01	Motor speed feedback(32-bit)	•				
	03	Speed instruction	•		•		
	04	Internal torque instruction (relative to rated torque)	•	•	•		
	05	Phase current effective value	•	•	•		
	06	Busbar voltage	•		•		
	07	Absolute position counter (32-bit)	•		•		
	09	Electrical angle	•	•	•		
	10	Mechanical angle (relative to encoder zero point)	•		•		
	11	Identified inertia value	•		•		
	12	Speed value relative to input instruction	•	•	•		
P21	13	Position deviation counter (32-bit)	•	•	•		
121	15	Input pulse counter (32-bit)	•	•	•		
	17	Feedback pulse counter (32-bit)	•	•	•		
	19	Position deviation counter instruction unit (32-bit)	•	•	•		
	21	Digital input signal monitoring	•	•	•		
	23	Digital output signal monitoring	•	•	•		
	25	Total power-on time (32-bit)	•	•	•		
	27	Al1 voltage after adjustment	•	•	•		
	28	Al2 voltage after adjustment					
	29	Al1 voltage before adjustment	•	•			
	30	Al2 voltage before adjustment	•				
	31	Module temperature	•		•		
	36	Version code 1					

			Relevant mode			
Group No.		Name	Р	S	Т	
	37	Version code 2			•	
	38	Version code 3				
	39	Product series code	•			
	40	Fault record display				
	41	Fault code				
	42	Time stamp upon selected fault (32-bit)	•	•	•	
	44	Current rotation speed of the selected fault				
	45	U-phase current of the selected fault				
	46	V-phase current of the selected fault	•	•	•	
P21	47	Busbar voltage of the selected fault				
PZI	48	Input terminal state of the selected fault		•		
	49	Output terminal state of the selected fault	•	•		
	50	Customized software version number				
	51	Load ratio				
	52	Regenerative load ratio	•	•	•	
	53	Internal warning code				
	54	Current segment number of internal instruction	•	•	•	
	55	Customized serial code	•	•	•	
	56	Absolute position counter high 32 bits (32-bit)	•	•		
	58	Feedback pulse counter high 32 bits (32-bit)	•		•	

6.2 Parameter description

P00 Basic setting

P00.00	Motor rotation positive	Range	Default	Unit	Effective	Relevant		node
	direction definition	0 ~ 1	0		Restart	Р	S	Т

Set the relation between instruction direction and motor rotational direction:

- 0: When the instruction is positive, motor rotational direction is CCW (counterclockWise from facing the motor shaft)
- 1: When the instruction is positive, motor rotational direction is CW (clockWise from facing the motor shaft)

P00.01	mode selection	Range	Default	Unit	Effective	ive Releva		node
		0 ~ 7	0		Restart	Р	S	Т

Set the desired control mode

- 0: Position mode
- 1: Speed mode
- 2: Torque mode
- 3: Position mode/Speed mixed mode
- 4: Position mode/Torque mixed mode
- 5: Speed mode/Torque mixed mode
- 6: Full closed loop mode (Reserved)
- 7: CANopen mode

When modes 3 to 5 are selected, the DI function MODE_SEL is used to switch between the two modes; when MODE_SEL is 0, the control mode is mode 1, and when MODE_SEL is 1, the control mode changes to mode 2. When CANOpen communication control or EtherCAT communication control is used, mode 7 is configured.

P00.02	Real-time auto-tuning	Range	Default	Unit	Effective	Relevant		node
	mode	0 ~ 3	1		Immediate	Р	S	Т

Set the mode for real-time auto-tuning.

- 0: Invalid, real-time auto-tuning function is invalid.
- 1: Standard mode, no gain switching.
- 2: Positioning mode, with gain switching, is especially suitable for position control.
- 3: Dynamic testing of load, without parameter setting.

D00 03	Rigidity grade setting	Range	Default	Unit	Effective	ive Releva		node
P00.03	Rigidity grade setting	0 ~ 31	12		Immediate	Р	S	Т

Set the response level for real-time auto-tuning.

The higher the setting value from 0 to 31, the higher the bandwidth of the servo control circuit, the faster the response, and the greater the vibration that may be generated. Be sure to check the effect of the movement while adjusting the rigidity level from low to high.

The changed parameter is effective only when the control instruction is 0. Change the parameter, stop the instruction, and confirm that the parameter has taken effect before proceeding to the next step.

P00.04	Inertia ratio	Range	Default	Unit	Effective	Relevant		node
		0 ~ 6000	100	0.01	Immediate	Р	S	Т

Set the ratio of load to motor inertia.

0 ~ 60.00

P00.05	Position instruction source	Range	Default	Unit	Effective	Relevant mode		
		0 ~ 2	0		Restart	Р	S	Т

Set the source of instruction for position control.

- 0: Pulse instruction
- 1: Step value instruction
- 2: Internal position control

Pulse input source selection via P00_06 when set to 0.

P00.06	Pulse source	Range	Default	Unit	Effective	Relevant		node
		0 ~ 1	0		Restart	Р	S	Т

- 0: Low-speed pulse
- 1: High-speed pulse

P00.07	Pulse train form	Range	Default	Unit	Effective	Relevant		node
P00.07	Puise train form	0 ~ 5	0		Restart	Р		

Set the input form of the pulse instruction.

- 0: Direction + pulse, positive logic (default)
- 1: Direction + pulse, negative logic
- 2: A-phase (pulse)+B-phase (sign) orthogonal pulse 4 multiplication frequency, positive logic (A is ahead of B)
- 3: A-phase (pulse)+B-phase (sign) orthogonal pulse 4 multiplication frequency, negative logic (B is ahead of A)
- 4: CW+CCW, positive logic
- 5: CW+CCW, negative logic

	Pulse instruction number	Range	Default	Unit	Effective	Rele	vant m	node
P00.08	per turn of motor rotation	0 ~ 2147483646	10000	11 loit	Dootort	D		
	(32-bit)	0 ~ 2147483646	10000	1Unit	Restart	Р		

Set the required pulse instruction number per turn of motor rotation, which can be used in place of electronic gears.

0 Unit/Turn ~ 2147483646 Unit/Turn

It works when this function code value is 0.

P00.10	Electronic gear 1 numera-	Range	Default	Unit	Effective	Relevant n		node
	tor (32-bit)	0 ~ 2147483646	1		Immediate	Р		

Set the numerator of the first group electronic gear.

1 ~ 2147483646

It works when P00.08=0.

P00.12	Electronic gear denomina-	Range	Default	Unit	Effective	Releva		node
P00.12	tor (32-bit)	1 ~ 2147483646	1		Immediate	Р		

Set the denominator for the first group electronic gears.

1 ~ 2147483646

It works when P00.08=0.

P00.14	Pulse number per turn of	Range	Default	Unit	Effective	Rele	vant m	ode
	motor rotation (32-bit)	16 ~ 2147483646	2500	1PPR	Restart	Р		

Set the number of OUTA or OUTB pulses output per turn of the motor rotation.

16PPR ~ 2147483646PPR (calculate the number of lines according to the incremental photoelectric encoder)

P00.16	Pulse output positive	Range	Default	Unit	Effective	Relevan		node
	direction definition	0 ~ 1	0		Restart	Р	S	Т

Set the phase sequence logic for the pulse output function.

- 0: CCW (pulse output OUTA ahead of OUTB when the motor rotation direction is CCW)
- 1: CW (pulse output OUTA ahead of OUTB when the motor rotation direction is CW)

P00.17	Pulse output OZ polarity	Range	Default	Unit	Effective	Rele	vant m	node
P00.17	Pulse output OZ polarity	0 ~ 3	0		Restart	Р		

- 0: High level at the arrival of Z-phase pulse
- 1: Low level at the arrival of Z-phase pulse
- 2: High-precision Z-phase pulse, low level at the arrival of Z-phase pulse
- 3: High-precision Z-phase pulse, high level at the arrival of Z-phase pulse

P00.18	Pulse output function	Range	Default	Unit	Effective	Relevant		node
	selection	0 ~ 3	0		Restart	Р		

- 0: Encoder frequency division output;
- 1: Pulse instruction synchronous output.
- 2: Pulse instruction interpolation output (gantry synchronization)
- 3: External encoder pulse synchronization output

P00.19	Overlarge position devia-	Range	Default	Unit	Effective	Relevant m		node
	tion threshold (32- bit)	1 ~ 2147483646	200000	1P	Immediate	Р	S	Т

Set the threshold for detecting over large position deviation (Err.043 error) in units of the encoder minimum resolution.

1P ~ 2147483646P

P00.21	Braking register cetting	Range	Default	Unit	Effective	Rele	vant n	node
	Braking resistor setting	0 ~ 1	1		Immediate	Р	S	Т

Set the form in which the energy-consumption braking resistor is used.

- 0: Use internal regenerative resistor (100s)
- 1: Use external regenerative resistor and natural cooling (150s) or forced air cooling (200s)

P00.22	External resistor power	Range	Default	Unit	Effective	Relevant		node
	capacity	1 ~ 65535	100	1W	Immediate	Р	S	Т

Set the power of the energy consumption braking resistor.

1W ~ 65535W

I	P00.23	External resistor value	Range	Default	Unit	Effective	Rele	vant n	node
			1 ~ 1000	100	1Ω	Immediate	Р	S	Т

Set the resistance value of the energy consumption braking resistor.

 $1\Omega \sim 1000\Omega$

P00.24	External resistor heating	Range	Default	Unit	Effective	Rele	vant n	node
	time constant	1 ~ 30000	3000	0.1s	Immediate	Р	S	Т

Set the heating time constant of the energy consumption braking resistor.

0.1s ~ 3000.0s

P00.25 Regenerative voltage poin	Range	Default	Unit	Effective	Rele	vant n	node
	Regenerative voltage point	0 ~ 65535	385		Immediate	Р	S

0V ~ 1000V (generally default)

P00.26	Step value setting	Range	Default	Unit	Effective	Rele	vant n	node
		-9999 ~ 9999	50		Immediate	Р		

Set the instruction setting value for step amount position control.

-9999 ~ 9999 instruction unit

P00.27	High pulse train form	Range	Default	Unit	Effective	Relev	vant m	ode
		0 ~ 5	0		Restart	Р		

- 0: Direction + pulse, positive logic (default)
- 1: Direction + pulse, negative logic
- 2: A-phase (pulse) + B-phase (sign) orthogonal pulse, 4 multiplication, positive logic
- 3: A-phase + B-phase orthogonal pulse, 4 multiplication, negative logic
- 4: CW+CCW, positive logic
- 5: CW+CCW, negative logic

P00.28	Modulus mode low bit (32-	Range	Default	Unit	Effective	Rele	vant n	node
P00.20	bit)	0 ~ 4294967295	0	Р	Restart	Р		

Encoder unit: P

In the absolute value system, if this value is set will open modulus mode, the count value can only count from 0 to this value minus 1 (when gear ratio is 1). P07.11 need setting to 1 to open power-down memory function. P20-06 need writing to 8 to clear multi-turn and position feedback. Complete the setting to re-power on the device. If P00.28 and P00.30 are 0 by default, it is linear mode.

P00.30	Modulus mode high bit	Range	Default	Unit	Effective	Rele	vant m	node
	(32- bit)	0 ~ 4294967295	0	Р	Restart	Р		

Encoder unit: P

In the absolute value system, if this value is set, the modulus mode will be enabled, and the count value can only count from 0 to this value minus 1 (when the gear ratio is 1), it is necessary to set P07.11 to 1 to enable the power-failure memory function, and write P20-06 to 8 to clear the multi-turn and position feedback, and setup is completed to re-power up the device.

P00.28 and P00.30 are set to 0 for linear mode.

P01 Gain tuning

P01.00	Position loop gain 1	Range	Default	Unit	Effective	Relevant		node
	Position loop gain 1	10 ~ 20000	400	0.1/s	Immediate	Р		

Set the position loop gain to determine the position loop response level.

1.0/s ~ 2000.0/s.

The higher the gain, the faster the position loop response. However, too large a setting may cause vibration.

P01.01	Speed loop gain 1	Range	Default	Unit	Effective	Relevant m		node
		10 ~ 20000	200	0.1Hz	Immediate	Р	S	

Set the speed loop gain to determine the speed loop response level.

1.0Hz ~ 2000.0Hz.

The higher the gain, the faster the speed loop response. However, too large a setting may cause vibration.

P01.02	Speed loop integral time 1	Range	Default	Unit	Effective	Relevant		node
		15 ~ 51200	3000	0.01ms	Immediate	Р	S	

Set the integration time of the speed loop controller.

0.15ms ~ 512.00ms.

The smaller the setting value, the smaller the steady-state deviation. When the integration time is equal to 512.00, the integration is invalid.

P01.03	Speed detection filtering 1	Range	Default	Unit	Effective	Relevant mod		
		0 ~ 15	0		Immediate	Р	S	Т

Set the filter level for speed detection.

0 ~ 15

The larger the value, the better the vibration suppression effect. However, the response bandwidth may be reduced.

P01.04	Torque instruction filtering	Range	Default	Unit	Effective	Relevant m		node
	⁴ 1	0 ~ 10000	100	0.01ms	Immediate	Р	S	Т

Set the first-order low-pass filter time constant for the torque instruction section.

0.00ms ~ 100.00ms.

It suppresses the resonance caused by mechanical distortion.

P01.05	Position loop gain 2	Range	Default	Unit	Effective	Relevant		node
		10 ~ 20000	400	0.1/s	Immediate	Р		

 $1.0/s \sim 2000.0/s$ the second set of parameters acts as above.

P01.06	Speed loop gain 2	Range	Default	Unit	Effective	Relevant m		node
		10 ~ 20000	200	0.1Hz	Immediate	Р	S	

1.0Hz ~ 2000.0 Hz, the second set of parameters acts as above.

P01.07	Speed loop integral time 2	Range	Default	Unit	Effective	Rele	vant n	node
		15 ~ 51200	3000	0.01ms	Immediate	Р	S	

0.15ms ~ 512.00ms, the second set of parameters acts as above.

P01.08 Speed detec	Speed detection filtering 2	Range	Default	Unit	Effective	ve Relevant		node
	Speed detection filtering 2-	0 ~ 15	0		Immediate	Р	S	Т

Set the filter level for speed detection.

0 ~ 15

The larger the value, the better the vibration suppression effect, however, the response bandwidth will be reduced.

P01.09	Torque instruction filtering	Range	Default	Unit	Effective	Rele	vant n	node
	2	0 ~ 10000	100	0.01ms	Immediate	Р	S	Т

0.00ms ~ 100.00ms, the second set of parameters acts as above.

P01.10	Speed regulator PDFF	Range	Default	Unit	Effective	Relevant		node
	coefficient	0 ~ 1000	1000	0.1%	Immediate	Р	S	

Set the PDFF coefficient of the speed regulator, 0 to 100.0%

Setting to 100% is equivalent to the PI regulator (default), and setting to 0% is equivalent to PDF regulation, setting to an intermediate value reduces overshoot, but decreases the response level of the speed loop (relative to the PI regulator).

P01.11	Speed feed-forward	Range	Default	Unit	Effective	Relevant		node
	control selection	0 ~ 1	0		Restart	Р		

Set the speed feedforward selection for position control.

0: No speed feedforward

1: Internal speed feedforward

P01.12	Speed feed-forward gain	Range	Default	Unit	Effective	Relevan		node
		0 ~ 1500	300	0.1%	Immediate	Р		

Set the speed feedforward gain for position control. Position deviation at a certain speed can be reduced.

0.0% ~ 100.0%

P01.13	Speed feed-forward	Range	Default	Unit	Effective	Relevant		node
PU1.13	filtering time	0 ~ 6400	50	0.01ms	Immediate	Р		

Set the speed feedforward filter time constant for position control.

0.00ms ~ 64.00ms

P01.14	Torque feed-forward	Range	Default	Unit	Effective	Relevant mo		node
	control selection	0 ~ 2	0		Restart	Р	S	

Set the torque feedforward selection for position or speed control.

0: No torque feedforward

1: Internal torque feedforward

2: TFFD is used as torque feedforward input.

P01.15	Torque feed-forward gain	Range	Default	Unit	Effective	Rele	vant n	node
PU1.15	Torque leed-forward gain	0 ~ 1000	0	0.1%	Immediate	Р	S	

Set the torque feedforward gain for position or speed control. Position deviation during acceleration and deceleration can be reduced.

0.0% ~ 100.0%

P01.16	Torque feed-forward	Range	Default	Unit	Effective	Relevant		node
	filtering time	0 ~ 6400	0	0.01ms	Immediate	Р	S	

Set the time constant of the torque feedforward filter for position or speed control.

0.00ms ~ 64.00ms

P01.17	DI function GAIN—SWITCH	Range	Default	Unit	Effective	Relevan		node
	action switching selection	0 ~ 1	0		Immediate	Р	S	

Set the role of the DI function GAIN-SWITCH.

- 0: Speed loop regulator P(1)/PI(0) switching, gain is fixed to the first group.
- 1: First gain (0), second gain (1) switching

P01.18	Position control switching	Range	Default	Unit	Effective	Relevant		node
	mode	0 ~ 10	0		Immediate	Р	S	

Trigger condition setting for gain switching during position control.

- 0: The first gain fixed (P01.00 ~ P01.04)
- 1: The second gain fixed (P01.05 ~ P01.09)
- 2: Group 1 and 2 gain switching using DI input (GAIN_SEL) or P/PI switching by the speed regulator.
- 3: Large torque instruction, torque instruction over level (P01.20) + hysteresis (P01.21) switches to the 2nd gain, and when the speed instruction is lower than the level (P01.20) hysteresis (P01.21) in the specified delay time, return to the 1st gain. Unit: 1rpm.
 - 4: Not applicable to position control and full closed-loop control mode.
- 5: Speed instruction is large, speed instruction exceeds the level (P01.20) + hysteresis (P01.21) to switch to the 2nd gain, when the speed instruction is lower than the level (P01.20) hysteresis (P01.21) in the specified delay time, return to the 1st gain. Unit: 1rpm.
- 6: Position deviation is large, position deviation over the level (P01.20) + hysteresis (P01.21) switch to the 2nd gain, when the position deviation is lower than the level (P01.20) hysteresis (P01.21) in the specified delay time, return to the 1st gain. Unit: 1 encoder resolution.
- 7: There is a position instruction, position instruction is not 0 when switching to the second gain, when the position instruction continues to be 0 in the specified delay time, return to the 1st gain.
- 8: When the positioning is not completed, switch from the 1st gain to the 2nd gain; when the positioning is completed, return to the 1st gain within the specified delay time.
- 9: The actual speed is large, speed feedback over the level (P01.20) + hysteresis (P01.21) switch to the 2nd gain, when the speed feedback is lower than the level (P01.20) hysteresis (P01.21) in the specified delay time, return to the 1st gain.
- 10: With position instruction plus actual speed, switch to 2nd gain when position instruction is not 0, return to 1st gain when position instruction is 0 and the absolute value of actual speed is lower than the grade (P01.20) hysteresis (P01.21).

P01.19	Position control switching	Range	Default	Unit	Effective	Relevant		node
	delay	0 ~ 1000	50	0.1ms	Immediate	Р	S	

Set the delay time for gain switching during position control.

0 ~ 100.0ms

P01.20	Position control switching	Range	Default	Unit	Effective	Relevant		node
	class	0 ~ 20000	50		Immediate	Р	S	

Set the trigger level of gain switching for position control.

0 ~ 20000(Unit: according to the gain switching mode description), note that this parameter takes the value set in P01.21 as the lower limit.

P01.21	Position control gain	Range	Default	Unit	Effective	Relevant r		node
	switching hysteresis	0 ~ 20000	33		Immediate	Р	S	

Set the hysteresis of the trigger level of gain switching for position control.

 $0 \sim 20000$ (Unit: according to the gain switching mode description), note that this parameter takes the setting value of P01.20 as the upper limit.

P01.22	Position gain switching	Range	Default	Unit	Effective	Rele	vant n	node
PU1.22	time	0 ~ 10000	33	0.1ms	Immediate	Р	S	

Set the transition time from small gain to large gain for gain switching during position control.

0 ~ 1000.0ms

P01.23	Speed control switching	Range	Default	Unit	Effective	Relevant m	ode
	mode	0 ~ 5	0		Immediate	S	

Trigger condition setting for gain switching during speed control.

- 0: The first gain fixed (P01.00 ~ P01.04)
- 1: The second gain fixed (P01.05 ~ P01.09)
- 2: Group 1 and 2 gain switching using DI function 3 (GAIN_SEL) or P/PI switching by the speed regulator.
- 3: Large torque instruction, torque instruction over level (P01.25) + hysteresis (P01.26) switches to 2nd gain, and when the torque instruction is lower than level (P01.25) hysteresis (P01.26) it returns to 1st gain within the specified delay time. Unit: 0.1 %
- 4: The speed instruction change is large; the speed instruction change amount exceeds the level (P01.25) + hysteresis (P01.26) switching to the 2nd gain when the speed instruction change amount is lower than the level (P01.25) hysteresis (P01.26), return to the 1st gain within the specified delay time. Unit: 10rpm/s.
- 5: Speed instruction is large, speed instruction over rank (P01.25) + hysteresis (P01.26) switches to 2nd gain, when speed instruction is lower than rank (P01.25) hysteresis (P01.26), return to the 1st gain within the specified delay time. Unit: 1rpm.

P01.24	Speed control switching	Range	Default	Unit	Effective	Relevant mode
	delay	0 ~ 1000	0	0.1ms	Immediate	S

Set the delay time for gain switching during speed control.

0 ~ 100.0ms

P01.25	Speed control switching	Range	Default	Unit	Effective	Relevant	mode
	class	0 ~ 20000	0		Immediate	S	

Set the trigger level for gain switching during speed control.

 $0 \sim 20000$ (Unit: according to the gain switching mode description), note that this parameter takes the value set in P01.26 as the lower limit.

P01.26	Speed control switching	Range	Default	Unit	Effective	Relevant n	node
	hysteresis	0 ~ 20000	0		Immediate	S	

Set the hysteresis of the trigger level for gain switching during speed control.

 $0 \sim 20000$ (Unit: according to the gain switching mode description), note that this parameter takes the setting value of P01.25 as the upper limit.

P01.27	Torque control switching	Range	Default	Unit	Effective	Relevant		node
	mode	0 ~ 3	0		Immediate			Т

Trigger condition setting for gain switching during torque control.

- 0: The first gain fixed (P01.00 ~ P01.04)
- 1: The second gain fixed (P01.05 \sim P01.09)

- 2: Group 1 and 2 gain switching using DI input (GAIN-SWITCH) or P/PI switching by speed regulator.
- 3: Large torque instruction, torque instruction over level (P01.29) + hysteresis (P01.30) switches to the 2nd gain, and when the torque instruction is lower than level (P01.29) hysteresis (P01.30) it returns to the 1st gain within the specified delay time, Unit: 0.1%

P01.28	Torque control switching	Range	Default	Unit	Effective	Releva		ode
	delay	0 ~ 1000	0	0.1ms	Immediate			Т

Set the delay time for gain switching during torque control.

0 ~ 100.0ms

P01.29	Torque control switching	Range	Default	Unit	Effective	Relevant		iode
	class	0 ~ 20000	0		Immediate			Т

Set the trigger level for gain switching during torque control.

 $0 \sim 20000$ (Unit: according to the gain switching mode description), note that this parameter takes the value set in P01.30 as the lower limit.

P01.30	Torque control switching	Range	Default	Unit	Effective	Releva		iode
	hysteresis	0 ~ 20000	0		Immediate			Т

Set the hysteresis of the trigger level for gain switching during torque control.

 $0 \sim 20000$ (Unit: according to the gain switching mode description) Note that this parameter takes the value set in P01.29 as the upper limit.

P01.31	Observer enabled	Range	Default	Unit	Effective	Relevant mode		
		0 ~ 2	0		Restart	Р	S	Т

- 0: Not Enabled
- 1: Debugging
- 2: Enabled

P01.32 Obs	Observer cut-off frequency	Range	Default	Unit	Effective	Relevant mode		
		0 ~ 500	100	1Hz	Restart	Р	S	Т

0 ~ 500Hz

P01.33	Observer phase compen-	Range	Default	Unit	Effective	Rele	elevant mo	
	sation time	0 ~ 10000	0	0.01ms	Immediate	Р	S	Т

0.00 ~ 100.00ms

P01.34	Observer inertia coefficient	Range	Default	Unit	Effective Rel		Relevant mode		
	Observer mertia coemicient	0 ~ 10000	1000		Restart	Р	S	Т	

0 ~ 10000

P01.40	Model vibration suppres-	Range	Default	Unit	Effective	Relevant mode
	sion	0 ~ 1	0		Immediate	

0: Invalid

1: Valid

P01.41	Madal trading antian	Range	Default	Unit	Effective	Rele	vant m	node
	Model tracking option	0 ~ 9	0		Immediate	Р	·	

0: Not enabled

- 1: Enabled, model 1, no external feedforward
- 2: Enabled, model 1, valid external feedforward
- 3: Enabled, model 2, no external feedforward
- 4: Enabled, model 2, valid external feedforward
- 5: Reserved

P01.42	Model tracking gain	Range	Default	Unit	Effective	Rele	vant m	node
	Model tracking gain	10 ~ 20000	500	0.1/s	Immediate	Р		

1.0 ~ 2000.0 /S

P01.43	Model tracking compensa-	Range	Default	Unit	Effective	Releva		node
	tion factor	500 ~ 2000	1000	0.1%	Immediate	Р		

50.0 ~ 200.0%

P01.44	Model tracking speed	Range	Default	Unit	Effective	Relevant		node
	compensation gain	0 ~ 2000	1000	0.1%	Immediate	Р		

0.0 ~ 200.0%

P01.45	Model tracking torque	Range	Default	Unit	Effective	Relevant		node
	compensation gain 1	0 ~ 10000	1000	0.1%	Immediate	Р		

0.0 ~ 1000.0%

P01.46	Model tracking torque	Range	Default	Unit	Effective	Relevan		node
	compensation gain 2	0 ~ 10000	1000	0.1%	Immediate	Р		

0.0 ~ 1000.0%

P01.47	Model tracking gain 2	Range	Default	Unit	Effective	Rele	vant m	node
	Model tracking gain 2	10 ~ 20000	500	0.1/s	Immediate	Р		

1.0 ~ 2000.0 /S

P01.48	Model tracking compensa-	Range	Default	Unit	Effective	Rele	vant m	node
	tion coefficient 2	500 ~ 2000	1000	0.1%	Immediate	Р		

50.0 ~ 200.0%

P01.49	Model anti-resonance	Range	Default	Unit	Effective	Relevant		node
	frequency	10 ~ 2000	500	0.1Hz	Immediate	Р		

1.0 ~ 200.0Hz

P01.50	Model residual vibration	Range	Default	Unit	Effective	Rele	vant n	node
	frequency	10 ~ 2000	700	0.1Hz	Immediate	Р		

1.0 ~ 200.0Hz

P01.51	Vibration suppression	Range	Default	Unit	Effective	Relevant		node
	frequency point	10 ~ 2000	800	0.1Hz	Immediate	Р		

1.0 ~ 200.0Hz

P01.52	Vibration suppression	Range	Default	Unit	Effective	Rele	vant m	node
	compensation coefficient	10 ~ 1000	100	1%	Immediate	Р		

10% ~ 1000%

P01.53	Model delay bandwidth	Range	Default	Unit	Effective	Rele	vant m	node
	parameter	0 ~ 30000	4500	0.1Hz	Immediate	Р		

0 ~ 3000.0Hz

P01.54	Model delay compensation	Range	Default	Unit	Effective	Relev	vant m	ode	
	PU1.54	parameter	500 ~ 1500	800		Immediate	Р		

500 ~ 1500

P02 Vibration suppression

P02.00	Position instruction	Range	Default	Unit	Effective	Rele	vant m	node
	smoothing filter	0 ~ 65535	0	0.1ms	Immediate	Р		

In position control mode, set the position instruction first-order low-pass filter time constant.

0.0ms ~ 6553.5ms

P02.01	Position instruction FIR	Range	Default	Unit	Effective	Rele	vant m	ode
	filter	0 ~ 1280	0	0.1ms	Immediate	Р		

In position control mode, set the position instruction FIR filter time constant.

0.0ms ~ 128.0ms

P02.02	Adaptive filter mode	Range	Default	Unit	Effective Relev		vant mode	
		0 ~ 4	0		Immediate	Р	S	Т

Set the operating mode of the adaptive filter.

- 0: Adaptation is not valid; the 3rd and 4th filters work but the parameters are unchanged.
- 1: One adaptive filter is valid (the 3rd filter parameters are updated according to the adaptive result).
- 2: Two adaptive filters valid (the 3rd,4th filter parameters updated according to adaptive results).
- 3: Resonance frequency determination, results are displayed but filter parameters are not updated.
- 4: Clear adaptive results (adaptive not valid and the 3rd and 4th filters are not working).

P02.03	Adaptive filter load mode	Range	Default	Unit	Effective	Relevant mode		
		0 ~ 1	0		Immediate	Р	S	Т

0: 1

0: High rigidity load

1: Low rigidity load

P02.04	The first notch filter fre-	Range	Default	Unit	Effective	Relevant r		node
	quency (manual)	50 ~ 5000	5000	1Hz	Immediate	Р	S	Т

Set the center frequency of the 1st notch filter.

50 ~ 5000Hz. This filter is not effective at 5000Hz.

P02.05	The first notch filter width	Range	Default	Unit	Effective	Rele	vant n	node
		0 ~ 12	2		Immediate	Р	S	Т

Set the frequency width of the 1st notch filter.

0 ~ 12

P02.06	The first notch filter depth	Range	Default	Unit	Effective	Rele	vant n	node
		0 ~ 99	0		Immediate	Р	S	Т

Set the depth corresponding to the center frequency of the 1st notch filter.

0 ~ 99

P02.07	The second notch filter	Range	Default	Unit	Effective	Relevant		node
	frequency (manual)	50 ~ 5000	5000	1Hz	Immediate	Р	S	Т

Set the center frequency of the 2nd notch filter.

50 ~ 5000Hz. This filter is not effective at 5000Hz.

P02.08	The second notch filter	Range	Default	Unit	Effective	Relevant		node
	width	0 ~ 12	2		Immediate	Р	S	Т

Set the frequency width of the 2nd notch filter.

0 ~ 12

P02.09	The second notch filter	Range	Default	Unit	Effective	Rele	vant n	node
	depth	0 ~ 99	0		Immediate	Р	S	Т

Set the depth corresponding to the center frequency of the 2nd notch filter.

0 ~ 99

P02.10	The third notch filter	Range	Default	Unit	Effective	Relevant		node
	frequency	50 ~ 5000	5000	1Hz	Immediate	Р	S	Т

Set the center frequency of the 3rd notch filter (i.e., the first adaptive filter).

 $50 \sim 5000$ Hz, This filter is not effective at 5000Hz.

P02.11	The third notch filter width	Range	Default	Unit	Effective	Relevant m		node
		0 ~ 12	2		Immediate	Р	S	Т

Set the frequency width of the 3rd notch filter (i.e., the first adaptive filter).

0 ~ 12

P02.12	The third notch filter depth	Range	Default	Unit	Effective	Rele	node
		0 ~ 99	0		Immediate	Р	S

Set the depth corresponding to the center frequency of the 3rd notch filter (i.e., the first adaptive filter).

0 ~ 99

P02.13	The fourth notch filter	Range	Default	Unit	Effective	Relevant		node
	frequency	50 ~ 5000	5000	1Hz	Immediate	Р	S	Т

Set the center frequency of the 4th notch filter (i.e., the second adaptive filter).

50 ~ 5000Hz. This filter is not effective at 5000Hz.

P02.14	The fourth notch filter	Range	Default	Unit	Effective	Releva		node
	width	0 ~ 12	2		Immediate	Р	S	Т

Set the frequency width of the 4th notch filter (i.e., the second adaptive filter).

0 ~ 12

P02.15	The fourth notch filter	Range	Default	Unit	Effective	Releva		node
	depth	0 ~ 99	0		Immediate	Р	S	Т

Set the depth corresponding to center frequency of the 4th notch filter (i.e., the second adaptive filter).

0 ~ 99

P02.19	Position instruction FIR	Range	Default	Unit	Effective	Rele	vant n	node
	filter 2	0 ~ 1280	0	0.1ms	Immediate	Р		

Set the position instruction FIR filter time constant when in position control mode.

0.0ms ~ 128.0ms

P02.20	The first vibration damping	Range	Default	Unit	Effective	Relevan		node
	frequency	0 ~ 1000	0	0.1Hz	Immediate	Р	S	

Set the frequency value of the low-frequency resonance frequency point 1.

10.0Hz ~ 100.0Hz

P02.21	The first vibration damping	Range	Default	Unit	Effective	Rele	vant m	ode
	filtering setting	0 ~ 10	0	0.1	Immediate	Р	S	

Set the half-cycle attenuation coefficient for the low-frequency resonance frequency point 1.

0 ~ 1.0

P02.22	The second vibration	Range	Default	Unit	Effective	Relevant i		node
	damping frequency	0 ~ 1000	0	0.1Hz	Immediate	Р	S	

Set the frequency value of the low-frequency resonance frequency point 2.

10.0Hz ~ 100.0Hz

P02.23	The second vibration	Range	Default	Unit	Effective	Relevant		node
	damping filtering setting	0 ~ 10	0	0.1	Immediate	Р	S	

Set the half-period attenuation coefficient for the low-frequency resonance frequency point 2.

0 ~ 1.0

P02.31	Resonance point 1 fre-	Range	Default	Unit	Effective	Rele	vant m	node
P02.31	quency	0 ~ 5000	5000	1Hz	Display only	Р	S	Т

Resonance frequency detected by the 1st adaptive filter

P02.32	Resonance point 1 band-	Range	Default	Unit	Effective	Relevant mo		node
PUZ.3Z	width	0 ~ 20	2		Display only	Р	S	Т

Frequency width detected by the 1st adaptive filter

P02.33	Resonance point 1 ampli-	Range	Default	Unit	Effective	Relevant		node
PUZ.33	tude	0 ~ 1000	0		Display only	Р	S	Т

Amplitude of the resonant frequency detected by the 1st adaptive filter

P02.34	Resonance point 2 fre-	Range	Default	Unit	Effective	Relevant		node
	quency	0 ~ 5000	5000	1Hz	Display only	Р	S	Т

Resonance frequency detected by the 2nd adaptive filter

P02.35	Resonance point 2 band-	Range	Default	Unit	Effective	Rele	vant n	node
	width	0 ~ 20	2		Display only	Р	S	Т

Frequency width detected by the 2nd adaptive filter

P02.36	Resonance point 2 ampli-	Range	Default	Unit	Effective	Rele	vant m	node
	tude	0 ~ 1000	0		Display only	Р	S	Т

Amplitude of the resonance frequency detected by the 2nd adaptive filter

P03 Speed & torque control

D02.00	Speed instruction source	Range	Default	Unit	Effective	Relevant n	node
P03.00	Speed instruction source	0 ~ 6	0		Restart	S	

Set the source of instruction during speed control.

- 0: Digital setting (P03:03)
- 1: SPR (default AI1)
- 2: SPR, multi-segment instruction 2 ~ 16 switching
- 3: Multi-segment instruction 1 ~ 16 switching
- 4: Communication setting
- 5: SPR + digital setting
- 6: Multi-segment instruction 1 to 16 switching + digital setting

P03.03	Speed instruction setting	Range	Default	Unit	Effective	e Releva		node
P03.0	value	-9000 ~ 9000	200	1rpm	Immediate		S	

Set the speed instruction digital setting value.

-9000rpm ~ 9000rpm

P03.04	JOG speed setting	Range	Default	Unit	Effective	Relevant mo	ode
FU3.04	JOG speed setting	0 ~ 3000	200	1rpm	Immediate	S	

Set the speed setting value during JOG.

0rpm ~ 3000rpm

P03.08	Torque limit source	Range	Default	Unit	Effective	Relevant		node
PU3.06	lorque illilit source	0 ~ 3	0		Immediate	Р	S	

Torque limiting source selection.

- 0: Positive and negative internal torque limit (default).
- 1: Positive and negative external torque limit (select via P_CL, N_CL)
- 2: TLMTP is used as forward and reverse torque limit.
- 3: TLMTP, TLMTN forward and reverse limit.

P03.09	Internal forward torque	Range	Default	Unit	Effective	Relevant n		node
P03.09	limit	0 ~ 5000	3000	0.1%	Immediate	Р	S	

Set the internal torque limit value during forward rotation in the range of 0.0% to 500.0% (based on the rated motor torque).

When DI is configured with function 16 (P_CL) and the DI input is valid, the forward rotation external torque limit is in effect; this set value must not be greater than the P03.09 (forward rotation internal torque limit value) set value. When this setting value is greater than the parameter P03.09 setting value, the torque limit value will be the value set in P03.09.

P03.10	Internal reverse torque	Range	Default	Unit	Effective	Rele	vant n	node
PU3.10	limit	0 ~ 5000	3000	0.1%	Immediate	Р	S	

Set the internal torque limit value during reverse rotation in the range of 0.0% to 500.0% (based on the rated torque of the motor).

When DI is configured with function 17 (N_CL) and the DI input is valid, the reverse external torque limit is in effect; this set value must not be greater than the P03.10 (reverse internal torque limit value) set value. When this setting value is greater than the parameter P03.10 setting value, the torque limit value will be the value set in P03.10.

P03.11	External forward torque	Range	Default	Unit	Effective	Rele	Relevant mod	
P03.1	limit	0 ~ 5000	3000	0.1%	Immediate	Р	S	

Set the external torque limit value during the forward rotation in the range of 0.0% to 500.0% (based on the rated motor torque).

When DI is configured with function 16 (P_CL) and the DI input is valid, the forward rotation external torque limit is in effect.

P03.12	External reverse torque	Range	Default	Unit	Effective	Rele	vant m	ode
PU3.12	limit	0 ~ 5000	3000	0.1%	Immediate	Р	S	

Set the external torque limit value during reverse rotation in the range of 0.0% to 500.0% (based on the rated torque of the motor)

When DI is configured with function 17 (N_CL) and the DI input is valid, the reverse rotation external torque limit is in effect.

P03.14	Apploration time 1	Range	Default	Unit	Effective	Rele	vant m	node
PU3.14	Acceleration time 1	0 ~ 65535	10	1ms	Immediate		S	Т

0ms ~ 65535ms/1000rpm

P03.15	Deceleration time 1	Range	Default	Unit	Effective	Rele	vant n	node
PU3.15	Deceleration time 1	0 ~ 65535	10	1ms	Immediate		S	Т

0ms ~ 65535ms/1000rpm

P03.16	Acceleration time 2	Range	Default	Unit	Effective	Relev	ant m	node
	Acceleration time 2	0 ~ 65535	0	1ms	Immediate		S	

0ms ~ 65535ms/1000rpm

P03.17	Deceleration time 2	Range	Default	Unit	Effective	Relevant		node
P03.17	Deceleration time 2	0 ~ 65535	0	1ms	Immediate		S	

0ms ~ 65535ms/1000rpm

P03.19	Zoro spood clamp function	Range	Default	Unit	Effective	Rele	vant n	node
PU3.17	Zero-speed clamp function	0 ~ 2	0		Immediate		S	Т

Set the action at zero speed clamp.

- 0: Invalid
- 1: When ZERO_SPD is valid, the speed instruction is forced to 0.
- 2: When ZERO_SPD is valid, the speed instruction is forced to 0. When the actual motor speed is lower than P03.20, it switches to position control and locks at the current position.

P03.20	Zero-speed clamp thresh-	Range	Default	Unit	Effective	Rele	vant n	node
	old value	0 ~ 1000	10	1rpm	Immediate		S	Т

0rpm ~ 1000rpm

P03.22	Torque instruction course	Range	Default	Unit	Effective	Rele	vant m	node
P03.22	Torque instruction source	0 ~ 4	0		Restart			Т

Set the source of torque instruction during torque control.

- 0: Digital setting (P0325)
- 1: TQR (using AI input value as torque instruction value)
- 2: Digital setting, TQR switching (CMD_SEL)
- 3: Communication setting
- 4: TQR + digital setting

P03.25	Torque instruction key set	Range	Default	Unit	Effective	Relev	vant m	ode
	value	-3000 ~ 3000	0	0.1%	Immediate			Т

-300.0% ~ 300.0%(based on rated motor torque)

P03.26	Speed limit source under	Range	Default	Unit	Effective	Rele	vant m	ode
	torque control	0 ~ 1	0		Immediate			Т

- 0: Forward and reverse internal speed limits P03.27, P03.28
- 1: SPL (using AI input value as speed limit)

P03.27	Internal positive speed	Range	Default	Unit	Effective	Relevant mode
	limit	0 ~ 9000	3000		Immediate	Т

0rpm ~ 9000rpm

P03.28	Internal negative speed	Range	Default	Unit	Effective	Relevant mode
	limit	0 ~ 9000	3000		Immediate	Т

0rpm ~ 9000rpm

P03.29	Hard limit torque limit	Range	Default	Unit	Effective	Relevant mod		node
		0 ~ 4000	1000	0.1%	Immediate	Р	S	Т

Torque limit value when a hard limit is encountered.

 $-300.0\% \sim 300.0\%$ (based on motor rated torque).

A hard limit is considered to be encountered when the torque instruction rises rapidly and lasts longer than the detection time set in P03.30. Use the symbol of the torque instruction to distinguish between positive and negative hard limits.

P03.30	Hard limit torque limit	Range	Default	Unit	Effective	Releva		Relevant r		node
	detection time	0 ~ 2000	100		Immediate	Р	S	Т		

Torque limit detection time when hard limit is encountered, 0ms ~ 2000ms.

P03.31	Speed instruction number	Range	Default	Unit	Effective	ive Rele		Relevant mod		node
	selection mode	0 ~ 1	0		Restart		S			

Set the internal multi-segment speed control method.

- 0: DI terminal selection
- 1: Communication selection

	Acceleration time number	Range	Default	Unit	Effective	Rele	vant m	node
	for speed instruction from	0 ~ 1	0		Immediate		ν	
	segment 1 to 8	0 1	U		Illillediate		3	

0: Acceleration time 1 (P03.14)

1: Acceleration time 2 (P03.16)

	Deceleration time number	Range	Default	Unit	Effective	Releva	ant m	ode
P03.33	for speed instruction from	0 ~ 1	0		Immodiata		c	
	segment 1 to 8	0 % 1	0		Immediate		3	

0: Deceleration time 1 (P03.15)

1: Deceleration time 2 (P03.17)

	Acceleration time number	Range	Default	Unit	Effective	Relevant mode
P03.34	for speed instruction from	0 ~ 1	0		Immediate	C C
	segment 9 to 16	0 ~ 1	U		iiiiiiediate	

0: Acceleration time 1 (P03.14)

1: Acceleration time 2 (P03.16)

	Deceleration time number	Range	Default	Unit	Effective	Relevant mo	ode
P03.35	3.35 for speed instruction from segment 9 to 16	0 ~ 1	0		Immediate	C	
		0 % 1			iiiiiiediate		

0: Deceleration time 1 (P03.15)

1: Deceleration time 2 (P03.17)

		Range	Default	Unit	Effective	Relevant mo	de
P03.3	6 Segment 1 speed	-9000 ~ 9000	0	1rpm	Immediate	S	

16 internal multi-segment speed set values.

-9000rpm ~ 9000rpm

P03.37	Segment 2 speed	Range	Default	Unit Effective		Relevant mode		
		-9000 ~ 9000	0	1rpm	Immediate		S	

-9000rpm ~ 9000rpm

P03.38	Segment 3 speed	Range	Default	Unit Effective		Relevant mod		iode
		-9000 ~ 9000	0	1rpm	Immediate		S	

-9000rpm ~ 9000rpm

P03.39	Segment 4 speed	Range	Default	Unit	Effective	Relevant mo		node
		-9000 ~ 9000	0	1rpm	Immediate		S	

-9000rpm ~ 9000rpm

P03.40	Seament 5 speed	Range	Default	Unit	Effective	Releva	ant m	ode
F03.40	Segment 5 speed	-9000 ~ 9000	0	1rpm	Immediate		S	

-9000rpm ~ 9000rpm

P03.41	Comment 4 annual	Range	Default	Unit	Effective	Relev	ant m	ode
P03.41	Segment 6 speed	-9000 ~ 9000	0	1rpm	Immediate		S	

-9000rpm ~ 9000rpm

203.42	Segment 7 speed	Range	Default	Unit	Effective	Relevant n	noae
	cogment / opecu	-9000 ~ 9000	0	1rpm	Immediate	S	
-9000	rpm ~ 9000rpm						
200 (0		Range	Default	Unit	Effective	Relevant n	node
203.43	Segment 8 speed	-9000 ~ 9000	0	1rpm	Immediate	S	
-9000	rpm ~ 9000rpm						
		Range	Default	Unit	Effective	Relevant n	node
203.44	Segment 9 speed	-9000 ~ 9000	0	1rpm	Immediate	S	
-9000	rpm ~ 9000rpm						
203.45	Commont 10 around	Range	Default	Unit	Effective	Relevant n	node
203.45	Segment 10 speed	-9000 ~ 9000	0	1rpm	Immediate	S	
-9000	rpm ~ 9000rpm						
203.46	Commont 11 aroad	Range	Default	Unit	Effective	Relevant n	node
203.46	Segment 11 speed	-9000 ~ 9000	0	1rpm	Immediate	S	
-9000	rpm ~ 9000rpm						
202 (7	C 12 d	Range	Default	Unit	Effective	Relevant n	node
P03.47	Segment 12 speed	-9000 ~ 9000	0	1rpm	Immediate	S	
-9000	rpm ~ 9000rpm						
203.48	Commont 12 around	Range	Default	Unit	Effective	Relevant n	node
203.46	Segment 13 speed	-9000 ~ 9000	0	1rpm	Immediate	S	
-9000	rpm ~ 9000rpm						
202.40	C1/	Range	Default	Unit	Effective	Relevant n	node
203.49	Segment 14 speed	-9000 ~ 9000	0	1rpm	Immediate	S	

P03.50	Segment 15 speed	Range	Default	Unit	Effective	Relev	vant m	iode
P03.50	Segment 15 speed	-9000 ~ 9000	0	1rpm	Immediate		S	

-9000rpm ~ 9000rpm

P03.51	Seament 16 speed	Range	Default	Unit	Effective	Relevant mod	de
PU3.5 I	Segment to speed	-9000 ~ 9000	0	1rpm	Immediate	S	

⁻⁹⁰⁰⁰rpm ~ 9000rpm

P04 Digital input and output

P04.00	Normal DI filter selection	Range	Default	Unit	Effective	Rele	vant n	node
P04.00	Normal Di filter selection	0 ~ 10000	500	1us	Restart	Р	S	Т

0 ~ 10000

This filtering parameter is available only for DI terminal 1 to DI terminal 6, and the filtering setting for DI terminal 7 to DI terminal 9 are shown in P06.44.

P04.01	DI1 terminal function	Range	Default	Unit	Effective	Rele	vant n	node
	selection	0 ~ 63	14		Restart	Р	S	Т

Input function code: 0 ~ 63

0: No definition

1 ~ 63: Refer to the digital input (DI) function definition table, some DI functions are undefined and reserved.

P04.02	DI2 terminal function	Range	Default	Unit	Effective	Rele	Relevant mod	
	selection	0 ~ 63	15		Restart	Р	S	Т

Input function code: 0 ~ 63

0: No definition

1 ~ 63: Refer to the digital input (DI) function definition table, some DI functions are undefined and reserved.

P04.03	DI3 terminal function	Range	Default	Unit	Effective	Rele	Relevant mod	
	selection	0 ~ 63	28		Restart	Р	S	Т

Input function code: 0 ~ 63

0: No definition

1 ~ 63: Refer to the digital input (DI) function definition table, some DI functions are undefined and reserved.

P04.04	DI4 terminal function	Range	Default	Unit	Effective	Relevant		node
	selection	0 ~ 63	39		Restart	Р	S	Т

Input function code: 0 ~ 63

0: No definition

1 ~ 63: Refer to the digital input (DI) function definition table, some DI functions are undefined and reserved.

P04.05	DI5 terminal function	Range	Default	Unit	Effective	Relevant		node
P04.05	selection	0 ~ 63	40		Restart	Р	S	Т

Input function code: 0 ~ 63

0: No definition

1 ~ 63: Refer to the digital input (DI) function definition table, some DI functions are undefined and reserved.

P04.06	DI6 terminal function	Range	Default	Unit	Effective	Rele	vant n	node
FU4.00	selection	0 ~ 63	0		Restart	Р	S	Т

Input function code: 0 ~ 63

0: No definition

1 ~ 63: Refer to the digital input (DI) function definition table, some DI functions are undefined and reserved.

P04.07	DI7 terminal function	Range	Default	Unit	Effective	Rele	Relevant m	
	selection	0 ~ 63	0		Restart	Р	S	Т

Input function code: 0 ~ 63

0: No definition

1 ~ 63: Refer to the digital input (DI) function definition table, some DI functions are undefined and reserved.

P04.08	DI8 terminal function	Range	Default	Unit	Effective	Relevant		node
	selection	0 ~ 63	0		Restart	Р	S	Т

Input function code: 0 ~ 63

0: No definition

1 ~ 63: Refer to the digital input (DI) function definition table, some DI functions are undefined and reserved.

P04.09	DI9 terminal function	Range	Default	Unit	Effective	Relevant i		node
	selection	0 ~ 63	0		Restart	Р	S	Т

Input function code: 0 ~ 63

0: No definition

1 ~ 63: Refer to the digital input (DI) function definition table, some DI functions are undefined and reserved.

P04.11	DI1 terminal logic selection	Range	Default	Unit	Effective	Relevant mod		
		0 ~ 1	1		Restart	Р	S	Т

Input polarity setting: 0 ~ 1

0: Low level is valid (closed)

1: High level is valid (open)

P04.12 DI2 t	DI2 terminal legis selection	Range	Default	Unit	Effective	Relevan		node
	DI2 terminal logic selection	0 ~ 1	1		Restart	Р	S	Т

Input polarity setting: 0 ~ 1

0: Low level is valid (closed)

1: High level is valid (open)

P04.13 DI	DI3 terminal logic selection	Range	Default	Unit	Effective	Rele	vant n	node
	Dis terminal logic selection	0 ~ 1	0		Restart	Р	S	Т

Input polarity setting: 0 ~ 1

0: Low level is valid (closed)

1: High level is valid (open)

P04.14 DI4 terminal log	214 terminal legie colection	Range	Default	Unit	Effective	/e Relev		node
	DI4 terminal logic selection	0 ~ 1	0		Restart	Р	S	Т

Input polarity setting: 0 ~ 1

0: Low level is valid (closed)

1: High level is valid (open)

P04.15	DIE terminal legis selection	Range	Default	Unit	Effective	Rele	vant n	node
	DI5 terminal logic selection	0 ~ 1	0		Restart	Р	S	Т

Input polarity setting: 0 ~ 1

0: Low level is valid (closed)

1: High level is valid (open)

P04.16	DI4 terminal logic colection	Range	Default Unit		Effective	Rele	node
	DI6 terminal logic selection	0 ~ 1	0		Restart	Р	S

Input polarity setting: 0 ~ 1

0: Low level is valid (closed)

1: High level is valid (open)

P04.17	DI7 terminal logic selection	Range	Default	Unit	Effective	Rele	vant n	node
	DI7 terminal logic selection	0 ~ 1	0		Restart	Р	S	Т

Input polarity setting: 0 ~ 1

0: Low level is valid (closed)

1: High level is valid (open)

P04.18	DI8 terminal logic selection	Range	Default	Unit	Effective	tive Relev		node
		0 ~ 1	0		Restart	Р	S	Т

Input polarity setting: 0 ~ 1

0: Low level is valid (closed)

1: High level is valid (open)

P04.19 D	DI9 terminal logic selection	Range	Default	Unit	Effective	ve Releva		node
		0 ~ 1	0		Restart	Р	S	Т

Input polarity setting: 0 ~ 1

0: Low level is valid (closed)

1: High level is valid (open)

P04.21	DO1 terminal function	Range	Default	Unit	Effective	Relevant		node
P04.21	selection	0 ~ 31	11		Restart	Р	S	Т

Input function code: 1 ~ 31

0: No definition

1 ~ 31: Refer to the digital output (DO) function definition table, some DO functions are undefined and reserved.

P04.22	DO2 terminal function	Range	Default	Unit	Effective	Relevant		node
PU4.22	selection	0 ~ 31	2		Restart	Р	S	Т

Input function code: 1 ~ 31

0: No definition

1 ~ 31: Refer to the digital output (DO) function definition table, some DO functions are undefined and reserved.

P04.23	DO3 terminal function	Range	Default	Unit	Effective	Relevant m		node
FU4.23	selection	0 ~ 31	7		Restart	Р	S	Т

Input function code: 1 ~ 31

0: No definition

1 ~ 31: Refer to the digital output (DO) function definition table, some DO functions are undefined and reserved.

P04.24	DO4 terminal function	Range	Default	Unit	Effective	Relevant r		node
PU4.24	selection	0 ~ 31	0		Restart	Р	S	Т

Input function code: 1 ~ 31

0: No definition

1 ~ 31: Refer to the digital output (DO) function definition table, some DO functions are undefined and reserved.

P04.25	DO5 terminal function	Range	Default	Unit	Effective	Relevant		node
	selection	0 ~ 31	0		Restart	Р	S	Т

Input function code: 1 ~ 31

0: No definition

1 ~ 31: Refer to the digital output (DO) function definition table, some DO functions are undefined and reserved.

P04.26	DO6 terminal function	Range	Default	Unit	Effective	Relevant		node
PU4.20	selection	0 ~ 31	0		Restart	Р	S	Т

Input function code: 1 ~ 31

0: No definition

1 ~ 31: Refer to the digital output (DO) function definition table, some DO functions are undefined and reserved.

P04.27	DO7 terminal function	Range	Default	Unit	Effective	Relevant		node
P04.27	selection	0 ~ 31	0		Restart	Р	S	Т

Input function code: 1 ~ 31

0: No definition

1 ~ 31: Refer to the digital output (DO) function definition table, some DO functions are undefined and reserved.

D	P04.28	DO8 terminal function	Range	Default	Unit	Effective	Rele	vant m	node
P	J4.Z0	selection	0 ~ 31	0		Restart	Р	S	Т

Input function code: 1 ~ 31

0: No definition

1 ~ 31: Refer to the digital output (DO) function definition table, some DO functions are undefined and reserved.

P04.29	DO9 terminal function	Range	Default	Unit	Effective	Relevant		node
PU4.29	selection	0 ~ 31	0		Restart	Р	S	Т

Input function code: 1 ~ 31

0: No definition

1 ~ 31: Refer to the digital output (DO) function definition table, some DO functions are undefined and reserved.

P04.31	DO1 terminal logic level	Range	Default	Unit	Effective	Relevant i		node
P04.31	selection	0 ~ 1	0		Restart	Р	S	Т

Output polarity setting: 0 ~ 1

0: Conduct when valid (normally-open contact)

1: Not to conduct when valid (normally-closed contact)

P04.32	DO2 terminal logic level	Range	Default	Unit	Effective	Relevant m		node
PU4.32	selection	0 ~ 1	1		Restart	Р	S	Т

Output polarity setting: 0 ~ 1

0: Conduct when valid (normally-open contact)

1: Not to conduct when valid (normally-closed contact)

P04.33	DO3 terminal logic level	Range	Default	Unit	Effective	Relevant		node
P04.33	selection	0 ~ 1	0		Restart	Р	S	Т

Output polarity setting: 0 ~ 1

0: Conduct when valid (normally-open contact)

1: Not to conduct when valid (normally-closed contact)

P04.34	DO4 terminal logic level	Range	Default	Unit	Effective	Rele	vant n	node
	selection	0 ~ 1	0		Restart	Р	S	Т

Output polarity setting: 0 ~ 1

- 0: Conduct when valid (normally-open contact)
- 1: Not to conduct when valid (normally-closed contact)

P04.35	DO5 terminal logic level	Range	Default	Unit	Effective	Relevant m		node
F04.33	selection	0 ~ 1	0		Restart	Р	S	Т

Output polarity setting: 0 ~ 1

- 0: Conduct when valid (normally-open contact)
- 1: Not to conduct when valid (normally-closed contact)

P04.36	DO6 terminal logic level	Range	Default	Unit	Effective	Relevant		node
	selection	0 ~ 1	0		Restart	Р	S	Т

Output polarity setting: 0 ~ 1

- 0: Conduct when valid (normally-open contact)
- 1: Not to conduct when valid (normally-closed contact)

P04.37	DO7 terminal logic level	Range	Default	Unit	Effective	Relevant		node
P04.37	selection	0 ~ 1	0		Restart	Р	S	Т

Output polarity setting: 0 ~ 1

- 0: Conduct when valid (normally-open contact)
- 1: Not to conduct when valid (normally-closed contact)

P04.38	DO8 terminal logic level	Range	Default	Unit	Effective	Relevant		node
	selection	0 ~ 1	0		Restart	Р	S	Т

Output polarity setting: 0 ~ 1

- 0: Conduct when valid (normally-open contact)
- 1: Not to conduct when valid (normally-closed contact)

P04.39	DO9 terminal logic level	Range	Default	Unit	Effective	Relevant		node
	selection	0 ~ 1	0		Restart	Р	S	Т

Output polarity setting: 0 ~ 1

- 0: Conduct when valid (normally-open contact)
- 1: Not to conduct when valid (normally-closed contact)

P04.41	FunINL signal unassigned	Range	Default	Unit	Effective	Relevant		node
	status (HEX)	0000H ~ FFFFH	0		Restart	Р	S	Т

Set the initial state of the DI function, and the DI function that is not configured to any DI terminal will maintain the initial state after power-on initialization.

Range (hexadecimal number) 0H to FFFFH.

Bit0: Reserved

Bit1: Correspond to DI function 1

Bit2: Correspond to DI function 2

....

Bit15: Correspond to DI function 15

P04.42	FunINH signal unassigned	Range	Default	Unit	Effective	Rele	vant n	node
FU4.42	status (HEX)	0000H ~ FFFFH	0		Restart	Р	S	Т

Range (hexadecimal number) 0H to FFFFH.

Bit0: Correspond to DI function 16

Bit1: Correspond to DI function 17

....

Bit15: Correspond to DI function 31

For DI functions numbered 32 and larger, user-set initial status is not supported.

P04.43	Motor rotational signal	Range	Default	Unit	Effective	Rele	vant n	node
P04.43	(TGON) threshold	0 ~ 1000	20	1rpm	Immediate	Р	S	Т

0rpm ~ 1000rpm

Ī	P04.44	Speed conformity signal	Range	Default	Unit	Effective	Relevant mode
1		width	10 ~ 1000	50	1rpm	Immediate	S

10rpm ~ 9000rpm

P04.45	Speed specified value	Range	Default	Unit	Effective	Rele	vant m	node
	arrival	10 ~ 9000	100	1rpm	Immediate	Р	S	Т

10rpm ~ 9000rpm

P04.47	Positioning completion	Range	Default	Unit	Effective	Relevant mo		node
	range	1 ~ 65535	100	1P	Immediate	Р		

1P ~ 65535P

P04.48	Positioning completion	Range	Default	Unit	Effective	Relevant m		ode
PU4.40	output setting	0 ~ 7	0		Immediate	Р		

- 0: When the absolute value of position deviation is less than the positioning completion range (P04_47), output COIN sig¬nal.
- 1: When the absolute value of the position deviation is less than the positioning completion range (P04_47) and the position instruction is 0, output COIN signal.
- 2: If the absolute value of position deviation is less than the range of positioning completion (P04_47) and the position in
 ¬struction is 0, the COIN signal is output and the holding time is P04_49.
- 3: When the absolute value of position deviation is less than the positioning completion range (P04_47), and the filtered position instruction is 0, output COIN signal.
 - 4: Condition 0, zero speed signal is valid, output COIN signal.
 - 5: Condition 1, zero speed signal is valid, output COIN signal.
 - 6: Condition 2, zero speed signal is valid, output COIN signal.
 - 7: Condition 3, zero speed signal is valid, output COIN signal.

P04.49	Positioning completion	Range	Default	Unit	Effective	Relevant		node
	holding time	1 ~ 65535	1	1ms	Immediate	Р		

1 ~ 65535ms

P04.50	Positioning poor range	Range	Default	Unit	Effective	Rele	vant n	node
	Positioning near range	1 ~ 65535	65535	1P	Immediate	Р		

1P ~ 65535P

	Servo OFF delay time after	Range	Default	Unit	Effective	Rele	vant n	node
P04.51	holding brake taking action	0 ~ 9999	10	1ms	Immediate	P	S	Т
	when speed is 0	0 ~ 7999	10	11115	Illinediate	'		

0ms ~ 9999ms

	Speed setting for holding	Range	Default	Unit	Effective	Relevant		node
P04.52	brake to take action in	0 ~ 3000	100	1rpm	Immediate	Р	S	Т
	motion	0 0000	100	Πριιι	mmediate	i i		

0rpm ~ 3000rpm

	Waiting time for holding	Range	Default	Unit	Effective	Relevar		node
P04.53	brake to take action in	0 ~ 9999	10	1mc	Immediate	D	C	т
	motion	0 ~ 9999	10	1ms	Immediate		3	'

0ms ~ 9999ms

D0 / E /	P04.54 Z pulse OCZ output enable	Range	Default	Unit	Effective	Rele	vant n	node
P04.54		0 ~ 2	0		Immediate	Р	S	Т

- 0: Not Supported
- 1: Invalid
- 2: Enable OCZ output

P04.55	Torque est value errival	Range	Default	Unit	Effective	Effective Releva		node
	Torque set value arrival	0 ~ 3000	1000	0.1%	Immediate	Р	S	Т

0.0% ~ 300.0% (based on rated motor torque).

When actual torque (absolute value) ≥ (P04.55 + P04.56) is detected, DO function 12 is valid.

When actual torque (absolute value) detected is < (P04.55 + P04.56), DO function 12 is invalid.

P04.56	Torque arrival detection	Range	Default	Unit	Effective	Relevant		node
	width	0 ~ 3000	200	0.1%	Immediate	Р	S	Т

0.0% ~ 300.0%(based on motor rated torque)

P04.57	Z-phase pulse width	Range	Default	Unit	Effective	Relevant		node
	adjustment	0 ~ 100	0		Restart	Р	S	Т

0 ~ 100

P04.58	Zero-speed signal output	Range	Default	Unit	Effective	Relevar		node
FU4.36	threshold	0 ~ 1000	60	1rpm	Immediate	Р	S	Т

0 $\,^{\circ}$ 1000rpm, DO function 5 is valid after the actual speed falls below this threshold.

P05 Analog input and output

P05.00	A14	Range	Default	Unit	Effective	Relevan	vant n	node
	Al1 minimum input	-1000 ~ 1000	-1000	0.01V	Immediate	Р	S	Т

Note that this parameter takes the set value of P05.02 as the upper limit.

	Setting value correspond-	Range	Default	Unit	Effective	Rele	vant n	node
P05.01	ing to the Al1 minimum	-1000 ~ 1000	-1000	0.1%	Immediate	P	S	Т
	input	1000 1000	1000	0.170	Immediate	_ '		

-100.0% ~ 100.0%

(100% speed corresponds to the speed set in P05.14, and 100% torque corresponds to the torque set in P05.15.)

P05.02	Al1 maximum input	Range	Default	Unit	Effective	Relevant		node
		-1000 ~ 1000	1000	0.01V	Immediate	Р	S	Т

The setting range is -10.00V to 10.00V.

Note that this parameter takes the set value of P05.00 as the lower limit.

	Setting value correspond-	Range	Default	Unit	Effective	Rele	vant n	node
P05.03	ing to the AI1 maximum	-1000 ~ 1000	1000	0.1%	Immediate	D	C	т
	input	-1000 * 1000	1000	0.176	iiiiiilediate	Г	3	

-100.0% ~ 100.0%

(100% speed corresponds to the speed set in P05.14, and 100% torque corresponds to the torque set in P05.15.)

P05.04	Al1 zero-point fine tuning	Range	Default	Unit	Effective	Relevant		node
		-500 ~ 500	0	1mV	Immediate	Р	S	Т

-500mV ~ 500mV

P05.05	Al1 dead band setting	Range	Default	Unit	Effective	Relevant		node
		0 ~ 200	0	0.1%	Immediate	Р	S	Т

0.0 ~ 20.0%

P05.06	Al1 input filtering time	Range	Default	Unit	Effective	Rele	node
		0 ~ 65535	20	0.1ms	Immediate	Р	S

0.0ms ~ 6553.5ms

D05 07	Al2 minimum input	Range	Default	Unit	Effective	Relevant		nt mode	
P05.07	AIZ minimum input	-1000 ~ 1000	-1000	0.01V	Immediate	Р	S	Т	

The setting range is -10.00V to 10.00V.

Note that this parameter takes the set value of P05.09 as the upper limit.

	Setting value correspond-	Range	Default	Unit	Effective	Rele	vant n	node
P05.08	ing to the Al2 minimum	-1000 ~ 1000	-1000	0.1%	Immediate	Р	S	Т
	input							l

-100.0% ~ 100.0%

(100% speed corresponds to the speed set in P05.14, and 100% torque corresponds to the torque set in P05.15.)

P05.09	A12	Range	Default	Unit	Effective	Relevant		node
	Al2 maximum input	-1000 ~ 1000	1000	0.01V	Immediate	Р	S	Т

The setting range is -10.00V to 10.00V.

Note that this parameter takes the value set in P05.07 as the lower limit

P05.10	Setting value correspond-	Range	Default	Unit	Effective	Rele	vant n	node
	ing to the AI2 maximum	-1000 ~ 1000	1000	0.1%	Immediate	Р	S	Т
	input							

-100.0% ~ 100.0%

(100% speed corresponds to the speed set in P05.14, and 100% torque corresponds to the torque set in P05.15.)

DOE 11	Al2 zero-point fine tuning	Range	Range Default		Effective	Rele	Relevant mod		
P05.11	Aiz zero-point fine tuning	-500 ~ 500	0	1mV	Immediate	Р	S	Т	

-500mV ~ 500 mV

P05.12	Al2 dead band setting	Range	Default	Unit	Effective	Relevant		t mode	
		0 ~ 200	0	0.1%	Immediate	Р	S	Т	

0.0 ~ 20.0%

DOE 12	A10 :	Range	Default	Unit	Effective	Rele	vant n	node
P05.13	Al2 input filtering time	0 ~ 65535	20	0.1ms	Immediate	Р	S	Т

0.0ms ~ 6553.5ms

P05.14	Al + + i 1000/	Range	Default	Unit	Effective	Rele	node
	Al setting 100% speed	0 ~ 9000	1000	1rpm	Immediate	Р	S

0 ~ 9000rpm

DOE 15	Al++: 1000/ +	Range	Default	Unit	Effective	Relevant n		node
P05.15	Al setting 100% torque	0 ~ 500	100	0.01	Immediate	Р	S	Т

 $0 \sim 5.00$ times rated motor torque

P05.16	Al1 function selection	Range	Default	Unit	Effective	Relevan		node
		0 ~ 5	0		Immediate	Р	S	Т

0 ~ 5

0: SPR, speed instruction

1: TQR, torque instruction

2: SPL, speed limit

3: TLMTP, positive torque limit

4: TLMTN, negative rotation limit

5: TFFD, torque feed forward

P05.17	Al2 function selection	Range	Default	Unit	Effective Relev		evant mode	
	AIZ function selection	0 ~ 5	3		Immediate	Р	S	Т

0 ~ 5

0: SPR, speed instruction

1: TQR, torque instruction

2: SPL, speed limit

3: TLMTP, positive torque limit

- 4: TLMTN, negative rotation limit
- 5: TFFD, torque feed forward

P05.28	AO1 signal selection (need	Range	Default	Unit	Effective	Relevant		node
	optional card)	0 ~ 13	0		Immediate	Р	S	Т

- 0: Motor speed (1V/1000rpm) default
- 1: Speed instruction (1V/1000rpm)
- 2: Torque instruction (1V/100%)
- 3: Position deviation (0.05V/1 instruction unit)
- 4: Position amplifier deviation (after electronic gear) (0.05V/1 encoder pulse unit)
- 5: Position instruction speed (1V/1000 rpm)
- 6: Positioning completion instruction (completed: 5V, not completed: 0V)
- 7: Speed feed-forward (1V/1000rpm)
- 8: Torque feed-forward (1V/100%)
- 9: Load rate (1V/100%)
- 10: Regenerative load rate (1V/100%)
- 11: Drive temperature (0.1V/1°C)
- 12: AI1 (1V/1V)
- 13: AI2 (1V/1V)

DOE 20	A01	Range	Default	Unit	Effective	Relevant n		node
P05.29	AO1 voltage offset	-10000 ~ 10000	0	1mV	Immediate	Р	S	Т

-10000mV ~ 10000mV

P05.30	AO1 multiplication	Range	Default	Unit	Effective	Rele	node
	AO1 multiplication	-9999 ~ 9999	100	0.01	Immediate	Р	S

-99.99 ~ 99.99

P05.31	AO2 signal selection (need	Range	Default	Unit	Effective	Relevant		node
	optional card)	0 ~ 13	0		Immediate	Р	S	Т

- 0: Motor speed (1V/1000rpm) default
- 1: Speed instruction (1V/1000rpm)
- 2: Torque instruction (1V/100%)
- 3: Position deviation (0.05V/1 instruction unit)
- 4: Position amplifier deviation (after electronic gear) (0.05V/1 encoder pulse unit)
- 5: Position instruction speed (1V/1000 rpm)
- 6: Positioning completion instruction (completed: 5V, not completed: 0V)
- 7: Speed feed-forward (1V/1000rpm)
- 8: Torque feed-forward (1V/100%)
- 9: Load rate (1V/100%)
- 10: Regenerative load rate (1V/100%)

11: Drive temperature (0.1V/1°C)

12: AI1 (1V/1V)

13: AI2 (1V/1V)

D0E 22	A02 h	Range	Default	Unit	Effective	Relevan		ant mode	
P05.32	AO2 voltage offset	-10000 ~ 10000	0	1mV	Immediate	Р	S	Т	

-10000mV ~ 10000mV

DOE 22	A O 2 b; - ;	Range	Default	Unit	Effective	Relevant m		node
P05.33	AO2 multiplication	-9999 ~ 9999	100	0.01	Immediate	Р	S	Т

-99.99 ~ 99.99

P05.34	/ AOititt	Range	Default	Unit	Effective	Relevant		node
	4 AO monitoring value type	0000H ~ 00FFH	0		Immediate	Р	S	Т

0 ~ 255

Hexadecimal number, each bit from right to left.

Digit 1: Set the monitoring value type of AO1;

Digit 2: Set the monitoring value type of AO2.

0: Signed data output, -10V ~ +10V.

1: Absolute value data output, 0 ~ 10V.

P06 Expansion parameter

P06.00	Electronic gear numerator	Range	Default	Unit	Effective	Rele	vant n	node
	2 (32-bit)	0 ~ 2147483646	0		Immediate	Р	S	Т

1 ~ 2147483646

P06.02	Electronic gear numerator	Range	Default	Unit	Effective	Relevant m	node
	3 (32-bit)	0 ~ 2147483646	1		Immediate	Р	

1 ~ 2147483646

P06.04	Electronic gear numerator	Range	Default	Unit	Effective	Relevant r		node
	4 (32-bit)	0 ~ 2147483646	1		Immediate	Р		

1 ~ 2147483646

P06.06	Position deviation clearing	Range	Default	Unit	Effective	Releva		node
	function	0 ~ 3	0		Immediate	Р		

- 0: Position deviation pulses are cleared when the servo is OFF or when a malfunction occurs.
- 1: Position deviation pulse is cleared only when a malfunction occurs.
- 2: Position deviation pulse is cleared when the servo is OFF, a malfunction occurs, or the DI function (PERR_CLR) is active.
- 3: Position deviation pulse is cleared only by the DI function (PERR_CLR).

P06.09	Electronic gear ratio	Range	Default	Unit	Effective	Relevant		node
	switching delay	0 ~ 1	0		Restart	Р		

0: Position instruction pulse is 0 for 10ms and then switching

1: Real-time switching

P06.10	Potential energy load	Range	Default	Unit	Effective	Relevant		node
	torque compensation	-100 ~ 100	0	1%	Immediate	Р	S	

Compensate for gravity loads. Range: -100% ~ 100%

DO/ 11	P06.10 and friction com-	Range	Default	Unit	Effective	Relevant r		node	
P	P06.11	pensation storage options	0 ~ 2	2		Immediate	Р	S	

Unit's digit: (potential energy compensation option)

- 0: Automatic update, power-failure storage
- 1: Auto-update, re-initialize to set value at power-failure
- 2: No automatic update

Ten's digit: (friction compensation option)

- 0: Automatic update, power-failure storage
- 1: Auto-update, re-initialize to set value at power-failure
- 2: No automatic update
- 3: Potential energy compensation is automatically updated and saved at power-failure; friction compensation is not automatically updated.

DO/ 12	Forward rotation frictional	Range	Default	Unit	Effective	Relevant		node
P06.12	torque compensation	-3000 ~ 3000	0	0.1%	Immediate	Р	S	

0.1% torque unit

 $(0 \sim 300.0)$

P06.13	Reverse rotation friction	Range	Default	Unit	Effective	Relevant		node
	torque compensation	-3000 ~ 3000	0	0.1%	Immediate	Р	S	

0.1% torque

Unit (-300.0 ~ 300.0)

P06.14	Viscous friction compensa-	Range	Default	Unit	Effective	Relevant m		node
	tion	-3000 ~ 3000	0	0.1%	Immediate	Р	S	

0.1% torque

Unit (-300.0 ~ 300.0)

P06.15	Friction compensation time	Range	Default	Unit	Effective	Relevant		node
	constant	0 ~ 10000	0	0.1ms	Immediate	Р	S	

0.1ms Unit (0 ~ 1000.0ms)

P06.16	Friction compensation low	Range	Default	Unit	Effective	Relevant		node
	speed range	0 ~ 500	1	1rpm	Immediate	Р	S	

0 ~ 500rpm

P06.19	Parameter identification	Range	Default	Unit	Effective	Relevant		node
	rate	100 ~ 1000	500		Restart	Р	S	

100 ~ 1000rpm

P06.18	The first type fault stop	Range	Default	Unit	Effective	Rele	vant n	node
	selection	0 ~ 1	0	1	Immediate	Р	S	Т

0 -Coast to stop, remain free

1-DB stop, hold DB

P06.20	Parameter identification	Range	Default	Unit	Effective	Relevant n		node
	acceleration time	50 ~ 10000	100		Restart	Р	S	

50 ~ 10000ms

P06.21	Parameter identification	Range	Default	Unit	Effective	Relevant		node
	deceleration time	50 ~ 10000	100		Restart	Р	S	

50 ~ 10000ms

P06.22	Parameter identification	Range	Default	Unit	Effective	Relevant		node
	mode selection	0 ~ 1	0		Restart	Р	S	

0: Inertia is not automatically updated during auto-tuning.

1: Inertia is automatically updated during auto-tuning;

P06.23	Initial angle identification	Range	Default	Unit	Effective	Relevant		node
	current limit	0 ~ 2000	500	0.1%	Restart	Р	S	Т

0 ~ 200.0%

	Instantaneous power	Range	Default	Unit	Effective	Relev		node
P06.24	failure protection & The	0 ~ 1	0		Immodiata	D		_
	third type of fault stop		U		Immediate		3	I

This protection function can be enabled in the event of a momentary power failure if the power can be restored immediately, allowing the previous state before the main power failure to be restored immediately after the power is restored.

0: Disable, the third type of fault stops in the same way as the second type of fault stops.

1: Enable, the third type of fault is handled according to the servo internal quick stop, the deceleration time is set according to P06.25 to coast to stop and remain free.

P06.25	Instantaneous power	Range	Default	Unit	Effective	Relevant m		node
	failure deceleration time	1 ~ 10000	20	1ms	Immediate	Р	S	Т

After enabling the momentary power failure protection, use this power failure deceleration time when stopping the ma¬chine. The range is 0ms to 10000ms/1000rpm.

P06.26	Servo OFF stop mode	Range	Default	Unit	Effective	Relevant r		node
	selection	0 ~ 5	4		Restart	Р	S	Т

0: Coast to stop, remain free

1: Zero speed stop, remain free

2: Stop by emergency stop torque, remain free

3: DB stop, hold DB

4: Zero speed stop, hold DB

5: Stop by emergency stop torque, hold DB

D0 / 27	Fault at an anala ada at an	Range	Default	Unit	Effective	Rele	vant n	node
P06.27	Fault stop mode selection	0 ~ 5	4		Restart	Р	S	Т

- 0: Coast to stop, remain free
- 1: Zero speed stop, remain free
- 2: Stop by emergency stop torque, remain free
- 3: DB stop, hold DB
- 4: Zero speed stop, hold DB
- 5: Stop by emergency stop torque, hold DB

Note: Encoder alarm Err.13, Err.14 fault stop mode:

P06.27 set 0~2: Coast to stop and remain free

P06.27 set 3~5: DB stop and hold DB

P06.28	Over-travel input setting	Range	Default	Unit	Effective	Relevant i		node
		0 ~ 1	1		Restart	Р	S	Т

- 0: DI function 14 (P_OT) positive drive is disabled, DI function 15 (N_OT) negative drive is disabled
- 1: Invalid

P06.29	Over-travel stop mode	Range	Default	Unit	Effective	Rele	node
	selection	0 ~ 2	1		Restart	Р	S

- 0: Deceleration stop at the deceleration rate defined in the user's actual position/speed instruction, enter position lock after stopping, and stay in the state at the time the stop was triggered.
- 1: Deceleration stop with the deceleration time set in 6085h, enter position lock after stopping, and stay in the state at the time the stop was triggered.
- 2: Deceleration stop with the deceleration time set at 6085h, enter position lock after stopping, and stay in the state at the time the stop was triggered and limit the torque in the overtravel direction.

P06.30	Input power phase loss	Range	Default	Unit	Effective	Relevant		node
	protection	0 ~ 1	0		Immediate	Р	S	Т

- 0: Enable protection
- 1: Disable protection

P06.31	Output power phase loss	Range	Default	Unit	Effective	Relevant m		node
	protection	0 ~ 1	0		Immediate	Р	S	Т

- 0: Enable protection
- 1: Disable protection

P06.32	Stop by emergency stop	Range	Default	Unit	Effective	Relevan		node
	torque	0 ~ 5000	3000	0.1%	Immediate	Р	S	Т

0.0% ~ 300.0% (based on motor rated torque)

P06.33	Tripping protection func-	Range	Default	Unit	Effective	Relevant m		node
	tion	0 ~ 1	1		Immediate	Р	S	Т

0: Disable protection

1: Enable protection

P06.34	0	Range	Default	Unit	Effective	Rele	elevant mode	
	Overload warning value	1 ~ 100	100	1%	Immediate	Р	S	Т

1% ~ 100%

P06.35	Motor overload protection	Range	Default	Unit	Effective	Relevan		node
	coefficient	10 ~ 300	100	1%	Immediate	Р	S	Т

10% ~ 300%

P06.36	Undervoltage protection	Range	Default	Unit	Effective	Relevant		node
P06.3	point	50 ~ 130	100	1%	Immediate	Р	S	Т

50% ~ 100% (100% corresponds to the default undervoltage point)

DO / 27	Own and foult waint	Range	Default	Unit	Effective	Rele	vant n	node
P06.37	Over-speed fault point	50 ~ 120	120	1%	Immediate	Р	S	Т

50% ~ 120% (100% corresponds to maximum motor speed)

D0 (20	Maximum input pulse	Range	Default	Unit	Effective	Relevant		node
P06.38	frequency	10 ~ 9000	500	1KHz	Restart	Р		

10 ~ 4000K

	Short circuit to ground	Range	Default	Unit	Effective	Rele	vant n	node
P06.39	detection protection selection	0 ~ 1	0		Immediate	Р	S	Т

0: Enable detection (default)

1: Disable detection

P06.40	Encoder interference	Range	Default	Unit	Effective	Relevant		node
	detection delay	0 ~ 99	0		Immediate	Р	S	Т

0 ~ 99

P06.41	la contra de la contra del la contra del la contra del la contra de la contra del la c	Range	Default	Unit	Effective	Rele	vant n	node
	Input pulse filtering setting	0 ~ 500	40		Restart	Р		

0 ~ 500 (Unit: 10ns)

Below 250KHz, the recommended value is 40;

250K ~ 500K, the recommended value is 20;

500K ~ 1M, the recommended value is 10;

Above 1M, the recommended value is 5;

Above 2M, set to 0.

P06.42	Pulse inhibition input	Range	Default	Unit	Effective	Relevant n		node
	setting	0 ~ 3	0		Restart	Р		

0: 0.5ms twice continuously consistent;

1: 0.5ms three times continuously consistent;

2: 1ms three times continuously consistent;

3: 2ms three times continuously consistent.

(Pulse inhibit function can only be configured to the following DI terminals: DI7, DI8, DI9)

P06.43	Deviation clearing input	Range	Default	Unit	Effective	Rele	vant m	node
	setting	0 ~ 1	0		Restart	Р		

0: Level is valid;

1: Edge is valid.

(The deviation clearing function can only be configured to the following DI terminals: DI7, DI8, DI9)

P06.44	Touch probe DI filtering	Range	Default	Unit	Effective	Relevant		node
	setting	0 ~ 10000	50	1us	Restart	Р	S	Т

1us/unit

(DI4 and DI5 touch probe filtering time)

P06.45	Overlarge speed deviation	Range	Default	Unit	Effective	Rele	vant m	ode
	threshold	0 ~ 10000	0	1rpm	Immediate	Р	S	

Range: 0 ~ 10000rpm

Not to detect when set to a value of 10 or less.

The absolute difference between the speed instruction and the actual measured speed exceeding this range will report fault Err.16.

P06.46	Torque saturation timeout	Range	Default	Unit	Effective	Relevant mod		node
	duration	0 ~ 30000	0	1ms	Immediate	Р	S	Т

Range: 0 ~ 30000ms

If the torque is saturated for a long time and the duration exceeds this range, error Err.17 is reported.

P06.47	Absolute system setting	Range	Default	Unit	Effective	ve Relevar		node
		0 ~ 19	0		Restart	Р	S	Т

0 ~ 19

Ones place:

- 0: Incremental system;
- 1: Absolute system (Err.12 needs manual clearing, industrial robotics special);
- 2: Absolute system (Err.12 needs manual clearing, industrial robotics special);
- 3~9: Absolute system with overflow error.

Tens place:

- 0: Battery undervoltage warning but keep running;
- 1: Battery undervoltage warning and stop.

P06.48	Encoder battery under-	Range	Default	Unit	Effective	Relevant		node
	voltage threshold	0 ~ 33	30	0.1V	Restart	Р	S	Т

Range: 0.0 ~ 3.3V

When the encoder battery voltage is detected to be lower than this value, it is judged to report a fault or warning accordang to the setting of P06.47.

P06.49	High-speed pulse input	Range	Default	Unit	Effective	Releva		node
	filtering	0 ~ 500	40		Restart	Р	S	Т

0 ~ 500 (Unit: 10ns)

Below 250KHz, the recommended value is 40;

250K ~ 500K, the recommended value is 20;

500K ~ 1M, the recommended value is 10;

Above 1M, the recommended value is 5;

Above 2M, set to 0.

P07 Auxiliary function

P07.00	Panel display option	Range	Default	Unit	Effective	Relevant		node
		0000H ~ FFFFH	0		Immediate	Р	S	Т

Hexadecimal, from right to left:

Digit 1: Display the setting at homepage of panel

0: Status display

When set to 1 to 5, display the parameters set in P07. 01 ~ P07. 05.

Other digits are reserved.

P07.01	Panel monitoring parame-	Range	Default	Unit	Effective	Rele	node
	ter setting 1	0 ~ 79	1		Immediate	Р	S

 $0 \sim 69$

Parameters of group P21 except P21.00 can be displayed directly on the panel. Setting to 0 does not display.

P07.02	Panel monitoring parame-	Range	Default	Unit	Effective	Relevar		node
	ter setting 2	0 ~ 79	5		Immediate	Р	S	Т

0 ~ 79, same as P07_01.

P07.03	Panel monitoring parame-	Range	Default	Unit	Effective	Relevant		node
	ter setting 3	0 ~ 79	6		Immediate	Р	S	Т

0 ~ 79, same as P07_01.

P07.04	Panel monitoring parame-	Range	Default	Unit	Effective		Relevant mode		
	ter setting 4	0 ~ 79	21		Immediate	Р	S	Т	

0 ~ 79, same as P07_01.

P07.05	Panel monitoring parame-	Range	Default	Unit	Effective	Releva		ant mode	
	ter setting 5	0 ~ 79	23		Immediate	Р	S	Т	

0 ~ 79, same as P07_01.

P07.08	Function selection 1	Range	Default	Unit	Effective	Relevant		t mode	
		0000H ~ FFFFH	0		Immediate	Р	S	Т	

Hexadecimal number, from right to left:

Digit 1, the time multiplication of the origin search;

Digit 2, Deviation clearing setting during pulse inhibition:

0, No automatic deviation clearing during pulse inhibition

1, Automatic deviation clearing during pulse inhibition

Digit 3, limit detection method during origin search:

Set to 0, detection by DI functions 14 and 15;

Set to 1, detection by hard limit torque limit;

Set to 2, DI function or hard limit torque limit detection.

Digit 4, soft limit detection setting:

Set to 0, no soft limit detection;

Set to 1, soft limit detection starts at power-on;

Set to 2, the soft limit is detected only after the return to origin is completed.

D07.00	Function selection 2	Range	Default	Unit	Effective	Relevant		node
P07.09		0000H ~ FFFFH	0		Immediate	Р	S	Т

Reserved.

D07.10	07.10 User password	Range	Default	Unit	Effective	Relevant		node
P07.10		0 ~ 65535	0		Immediate	Р	S	Т

0 ~ 65535

P07.11	Instant memory storage	Range	Default	Unit	Effective	Relevant mo		node
	during power outage	0 ~ 1	0		Immediate	Р	S	Т

0: Disabled

1: Enabled

P07.12	User password screen-lock	Range	Default	Unit	Effective	Releva		ant mode	
	time	1 ~ 30	5	1 min	Immediate	Р	S	Т	

1 ~ 30 min

D07.1/	Fast deceleration time	Range	Default	Unit	Effective	Relevan		nt mode	
P07.14		0 ~ 9999	5	1ms	Restart	Р	S	Т	

0ms ~ 9999ms

P07.16	Function selection 3	Range	Default	Unit	Effective	Relevant m		node
		0000H ~ FFFFH	0		Restart	Р	S	Т

Hexadecimal, from right to left:

Digit 1: Interrupt positioning instruction setting

0: No adjustment with electronic gear;

1: Adjust with electronic gear

Digit 2: Interrupt positioning instruction direction setting

0: Follow the current operation direction

1: Decided by instruction sign

Other digits are reserved.

D07.17	Resolution	Range	Default	Unit	Effective	ive Releva		ant mode	
P07.17		0 ~ 99	0		Immediate	Р			

Divide a circle of corresponding pulses into 0 to 99 parts.

P07.19	F stien enlastien F	Range	Default	Unit	Effective	Rele	node
	Function selection 5	0000H ~ FFFFH	0		Restart	Р	S

Hexadecimal, from right to left,

Digit 1: Reserved

Digit 2: Reserved

Digit 3: Position feedback initialization selection

Non-absolute system (P06. 47 is equal to zero):

0: Initialize to 0

1: Initialize to the value before power-off (power failure storage needs to be enabled, i.e. set P07.11 to 1)

Absolute system (P06. 47 is not equal to zero), decided by encoder value.

Digit 4: Absolute position (P21. 07) and position feedback (P21. 17) counter bit width selection

0: 32-bit counter

1: 64-bit counter

When using a 64-bit counter, a low 32-bit absolute position is displayed in P21. 07 and high 32-bit displays in P21. 56;

Low 32-bit position feedback displays in P21. 17 and high 32-bit displays in P21. 58.

P07.20	Function selection 6	Range	Default	Unit	Effective	Relevant m		node
		0000H ~ FFFFH	0		Restart	Р	S	Т

Hexadecimal, from right to left:

Digit 1: Motor type selection

0: Read from encoder;

1: Manual setting;

Digit 2: Software overcurrent detection

0. Fnable

1: Disable

Other digits are reserved.

P07.21	Function selection 7	Range	Default	Unit	Effective Releva		vant mode	
		0000H ~ FFFFH	0		Immediate	Р	S	Т

Hexadecimal, from right to left:

Digit 1: Servo not ready when enabled

0: No error or alarm

1: AL. 084 is reported

2: Er.040 is reported

Digit 2: Fault Er.046, Er.047 reset

0: Reset is not allowed;

1: Reset is not allowed until 10 seconds after the alarm;

Digit 3: DI DO monitoring display

0: In binary.

1: In hexadecimal

Digit 4: AL.097 reset

0: Reset

1: Not allowed to reset automatically

P07.22	Formation and attion 0	Range	Default	Unit	Effective	ffective Rele		node
	Function selection 8	0000H ~ FFFFH	0		Immediate	Р	S	Т

Hexadecimal, from right to left:

Digit 1: Main power off (Err .56) detection setting

0: Err .56 is detected and reset automatically

1: Not to detect Err .56

2: Err .56 is detected but cannot reset automatically

Digit 2: Undervoltage (Err .21) detection setting

0: Err .21 is detected and reset automatically

1: Not to detect Err .21.

2: Err .21 is detected but cannot reset automatically.

Digit 3: Error records of Err .21 and Err .56

0: Not to store

1: Store

Digit 4: Control power undervoltage error (Err .18) detection

0: Enable

1: Disable

P07.23	Fault reset timing	Range	Default	Unit	Effective	Relevan		node
		0 ~ 1	0		Immediate	Р	S	Т

0: Y when SON is valid

1: N when SON is valid

P07.24	Positive soft limit (32-bit)	Range	Default	Unit	Effective	Rele	node	
		-2147483646 ~	2147483646		Restart	D	_	т
		2147483646	2147403040		Vestalt		3	

It is valid during forward soft limit, position control, speed control, and torque control modes.

P07.26 Negative		Range	Default	Unit	Effective	Rele	node	
	Negative soft limit (32-bit)	-2147483646 ~	-2147483646		Restart	D	_	т
		2147483646	-214/403040		Restart	F	3	<u> </u>

It is valid during reverse soft limit, position control, speed control, and torque control modes.

P07.28	Homing signal holding	Range	Default	Unit	Effective	Relevant m		node
	time	0 ~ 65535	2000	ms	Immediate	Hm	S	Т

In the recovery mode, set the effective holding time of DO output when the recovery of HOME is completed, for example, the factory value is "2000" ms, the meaning is: when the recovery is completed, the DO logic output level corresponding to

HOME will be set to 1 and held for two seconds, and then cleared.

6041h status word BIT12 changes as above.

P08 Internal position instruction

P08.00	Multi-segment preset	Range	Default Unit Effective		Relevant mode		
	position execution method	0 ~ 5	0		Restart	Р	

- 0: Single operation
- 1: Cyclic operation
- 2: DI terminal switching operation
- 3: Communication switching operation
- 4: Single continuous operation
- 5: Cyclic continuous operation

There are a total of 16 segment instructions, and the starting segment serial number is set by P08.01, and the ending segment serial number is set by P08.02.

For single operation, start from the starting segment and execute each segment in turn until the ending segment;

For cyclic operation, start from the starting segment, execute each segment in turn until the ending segment, and then start from the starting segment again. This is repeated until the internal position enable signal is disabled or the servo is OFF;

Set to 2 and 3 to conduct random execution of selected segments, with segment serial numbers selected via the DI terminal or communication.

Set to 4 and 5, corresponding to 0 and 1, the difference is that the current segment does not need to decelerate to 0 before starting the next segment in the transition between the two segments, while each segment of execution mode 0 and 1 needs to decelerate to 0 before starting the next segment.

P08.01	Starting segment number	Range	Default	Unit	Effective	ctive Releva		ode
		1 ~ 32	1		Immediate	Р		

Range: 1 ~ (P08.02)

The two parameters P08.01 and P08.02 constrain each other.

P08.02	Ending segment number	Range	Default	Unit	Effective	Rele	vant n	node
		1 ~ 32	2		Immediate	Р		

Range: (P08: 01) ~ 16

The two parameters P08.01 and P08.02 constrain each other.

	Dealing of residual seg-	Range	Default	Unit	Effective	Rele	vant n	node
P08.03	ments after pausing and restarting	0 ~ 1	1		Immediate	Р		

- 0: Run the remaining segments
- 1: Run from the beginning again

P08.04	Davitian instruction to ma	Range	Default	Unit	Effective	Rele	vant m	node
	Position instruction type	0 ~ 1	0		Restart	Р		

- 0: Relative position instruction
- 1: Absolute position instruction

P08.05	\A/-:L:	Range	Default	Unit	Effective	Rele	vant n	node
	Waiting time unit	0 ~ 1	0		Immediate	Р		

- 0: The wait time between sequential execution (single or cyclic) timeslots and segments is measured in ms.
- 1: Wait time in s between sequential execution (single or cyclic) periods and segments.

P08.06	The first engment displace	Range	Default	Unit	Effective	Relevant mode		
	The first segment displace- ment (32-bit)	-2147483646 ~ 2147483646	10000		Immediate	Р		
		2147403040						

A value between -2147483646 and 2147483646 can be set, and a positive setting indicates a positive position instruction, while a negative setting indicates a negative position instruction.

P08.08	The first segment maxi-	Range	Default	Unit	Effective	Relevant n		node
	mum speed	1 ~ 9000	200	1rpm	Immediate	Р		

1 ~ 9000rpm

P08.09	The first segment acceler-	Range	Default	Unit	Effective	Relevant		ode
	ation/deceleration time	0 ~ 65535	10	1ms	Immediate	Р		

0 ~ 65535ms

P08.10	Waiting time after the first	Range	Default	Unit	Effective	Relevant r		node
	segment completed	0 ~ 65535	0	1ms	Immediate	Р		

0 ~ 65535ms/s. The specific unit is set by P08.05.

	The second segment	Range	Default	Unit	Effective Relevant		nt mode
P08.11	displacement (32-bit)	-2147483646 ~ 2147483646	10000		Immediate	Р	

A value between -2147483646 and 2147483646 can be set, and a positive setting indicates a positive position instruction, while a negative setting indicates a negative position instruction.

P08.13	The second segment	Range	Default	Unit	Effective	Relevant m		node
	maximum speed	1 ~ 9000	200	1rpm	Immediate	Р		

1 ~ 9000rpm

P08.14	The second segment accel-	Range	Default	Unit	Effective	Rele	Relevant mode		
	eration/deceleration time	0 ~ 65535	10	1ms	Immediate	Р			

0 ~ 65535ms

P08.15	Waiting time after the sec-	Range	Default	Unit	Effective	Relevant		node
	ond segment completed	0 ~ 65535	0	1ms	Immediate	Р		

0 ~ 65535ms/s. The specific unit is set by P08.05.

	The third segment dis-	Range	Default	Unit	Effective	Rele	vant m	node
P08.16	placement (32-bit)	-2147483646 ~ 2147483646	10000		Immediate	Р		

A value between -2147483646 and 2147483646 can be set, and a positive setting indicates a positive position instruction, while a negative setting indicates a negative position instruction.

P08.18	The third segment maxi-	Range	Default	Unit	Effective	Relevant n		node
	mum speed	1 ~ 9000	200	1rpm	Immediate	Р		

1 ~ 9000rpm

P08.19	The third segment acceler-	Range	Default	Unit	Effective	Relevant		node
	ation/deceleration time	0 ~ 65535	10	1ms	Immediate	Р		

0 ~ 65535ms

P08.20	Waiting time after the third	Range	Default	Unit	Effective	Relevant	mode
	segment completed	0 ~ 65535	0	1ms	Immediate	Р	

0 ~ 65535ms/s. The specific unit is set by P08.05.

P08.20	Waiting time after the third	Range	Default	Unit	Effective	Relevan		ode
P08.20	segment completed	0 ~ 65535	0	1ms	Immediate	Р		

 $0 \sim 65535$ ms/s. The specific unit is set by P08.05.

	The fourth segment dis-	Range	Default Unit Effective Relevant		vant m	node		
P08.21	placement (32-bit)	-2147483646 ~ 2147483646	10000		Immediate	Р		

A value between -2147483646 and 2147483646 can be set, and a positive setting indicates a positive position instruction, while a negative setting indicates a negative position instruction.

P08.23	The fourth segment maxi-	Range	Default	Unit	Effective	Relevant n		node
	mum speed	1 ~ 9000	200	1rpm	Immediate	Р		

1 ~ 9000rpm

P08.24	The fourth segment accel-	Range	Default	Unit	Effective	Relevant r		ode
	eration/deceleration time	0 ~ 65535	10	1ms	Immediate	Р		

0 ~ 65535ms

P08.25	Waiting time after the	Range	Default	Unit	Effective	Relevant		node
	fourth segment completed	0 ~ 65535	0	1ms	Immediate	Р		

 $0 \sim 65535$ ms/s. The specific unit is set by P08.05.

The fifth seament dis	Range	Default	Unit	Effective	Rele	Relevant mode		
placement (32-bit)	-2147483646 ~	10000		Immediate	Р			
	The fifth segment displacement (32-bit)	The fifth segment dis- placement (32-bit)	The fifth segment dis- placement (32-bit) -2147483646 ~ 10000	The fifth segment dis-	The fifth segment dis- placement (32-bit) -2147483646 ~ 10000 Immediate	The fifth segment dis- placement (32-bit) 10000 -2147483646 ~ Immediate P	The fifth segment dis- placement (32-bit) 10000 Immediate P	

A value between -2147483646 and 2147483646 can be set, and a positive setting indicates a positive position instruction, while a negative setting indicates a negative position instruction.

P08.28	The fifth segment maxi-	Range	Default	Unit	Effective	Relevant m		node
P08.28	mum speed	1 ~ 9000	200	1rpm	Immediate	Р		

1 ~ 9000rpm

P08.29	The fifth segment acceler-	Range	Default	Unit	Effective	Relevant r		ode
	ation/deceleration time	0 ~ 65535	10	1ms	Immediate	Р		

0 ~ 65535ms

P08.30	Waiting time after the fifth	Range	Default	Unit	Effective	Relevant		node
	segment completed	0 ~ 65535	0	1ms	Immediate	Р		

0 \sim 65535ms/s. The specific unit is set by P08.05.

	The sixth segment dis-	Range	Default	Unit	Effective	Rele	vant m	node
P08.31	placement (32-bit)	-2147483646 ~ 2147483646	10000		Immediate	Р		

A value between -2147483646 and 2147483646 can be set, and a positive setting indicates a positive position instruction, while a negative setting indicates a negative position instruction.

P08.33	The sixth segment maxi-	Range	Default	Unit	Effective	Relevant m		node
	mum speed	1 ~ 9000	200	1rpm	Immediate	Р		

1 ~ 9000rpm

P08.34	The sixth segment acceler-	Range	Default	Unit	Effective	Relevant		node
	ation/deceleration time	0 ~ 65535	10	1ms	Immediate	Р		

0 ~ 65535ms

P08.35	Waiting time after the sixth	Range	Default	Unit	Effective	Rele	vant m	node
	segment completed	0 ~ 65535	0	1ms	Immediate	Р		

0 ~ 65535ms/s. The specific unit is set by P08.05.

	The seventh segment	Range	Default	Unit	Effective	Relevan	t mode
P08.36	displacement (32-bit)	-2147483646 ~ 2147483646	10000		Immediate	Р	

A value between -2147483646 and 2147483646 can be set, and a positive setting indicates a positive position instruction, while a negative setting indicates a negative position instruction.

P08.38	The seventh segment	Range	Default	Unit	Effective	Relevant m		node
	maximum speed	1 ~ 9000	200	1rpm	Immediate	Р		

1 ~ 9000rpm

P08.39	Waiting time after the sev-	Range	Default	Unit	Effective	Releva	ant mode
	enth segment completed	0 ~ 65535	10	1ms	Immediate	Р	

0 ~ 65535ms

P08.40	The eighth segment dis-	Range	Default	Unit	Effective	Relevant i		node
	placement (32-bit)	0 ~ 65535	0	1ms	Immediate	Р		

 $0 \sim 65535$ ms/s. The specific unit is set by P08.05.

		The eighth segment dis-	Range	Default	Unit	Effective	Relevant mo		node
P	08.41	placement (32-bit)	-2147483646 ~ 2147483646	10000		Immediate	Р		

A value between -2147483646 and 2147483646 can be set, and a positive setting indicates a positive position instruction, while a negative setting indicates a negative position instruction.

P08.43	The eighth segment maxi-	Range	Default	Unit	Effective	Relevant m		node
	mum speed	1 ~ 9000	200	1rpm	Immediate	Р		

1 ~ 9000rpm

P08.44	eighth segment accelera-	Range	Default	Unit	Effective	Relevant		node
	tion/deceleration time	0 ~ 65535	10	1ms	Immediate	Р		

0 ~ 65535ms

P08.45	Waiting time after the	Range	Default	Unit	Effective	Relevant m		node
	eighth segment completed	0 ~ 65535	0	1ms	Immediate	Р		

0 ~ 65535ms/s. The specific unit is set by P08.05.

	The ninth segment dis-	Range	Default	Unit	Effective	Rele	vant n	node
P08.46	placement (32-bit)	-2147483646 ~ 2147483646	10000		Immediate	Р		

A value between -2147483646 and 2147483646 can be set, and a positive setting indicates a positive position instruction, while a negative setting indicates a negative position instruction.

P08.48	The ninth segment maxi-	Range	Default	Unit	Effective	Relevant r		node
	mum speed	1 ~ 9000	200	1rpm	Immediate	Р		

1 ~ 9000rpm

	P08.49	The ninth segment accel-	Range	Default	Unit	Effective	Rele	vant n	node
		eration/deceleration time	0 ~ 65535	10	1ms	Immediate	Р		

0 ~ 65535ms

P08.50	Waiting time after the	Range	Default	Unit	Effective	Relevant n		node
	ninth segment completed	0 ~ 65535	0	1ms	Immediate	Р		

0 \sim 65535ms/s. The specific unit is set by P08.05.

	The 10th segment dis-	Range	Default	Unit	Effective	Rele	vant n	node
P08.51	placement (32-bit)	-2147483646 ~ 2147483646	10000		Immediate	Р		
		2147400040						

A value between -2147483646 and 2147483646 can be set, and a positive setting indicates a positive position instruction, while a negative setting indicates a negative position instruction.

P08.53	The 10th segment maxi-	Range	Default	Unit	Effective	Relevant r		node
	mum speed	1 ~ 9000	200	1rpm	Immediate	Р		

1 ~ 9000rpm

P08.54	The 10th segment acceler-	Range	Default	Unit	Effective	Releva		node
	ation/deceleration time	0 ~ 65535	10	1ms	Immediate	Р		

0 ~ 65535ms

P08.55	Waiting time after the 10th	Range	Default	Unit	Effective	Relevant m		node
	segment completed	0 ~ 65535	0	1ms	Immediate	Р		

0 ~ 65535ms/s. The specific unit is set by P08.05.

	The 11th segment dis-	Range	Default	Unit	Effective	Relevant mod		node
P08.56	placement (32-bit)	-2147483646 ~	10000		Immediate	D		
	placement (32-bit)	2147483646	10000		iiiiiiediate			

A value between -2147483646 and 2147483646 can be set, and a positive setting indicates a positive position instruction, while a negative setting indicates a negative position instruction.

P08.58	The 11th segment maxi-	Range	Default	Unit	Effective	Relevant		node
	mum speed	1 ~ 9000	200	1rpm	Immediate	Р		

1 ~ 9000rpm

P08.59	The 11th segment acceler-	Range	Default	Unit	Effective	Relevant n		node
	ation/deceleration time	0 ~ 65535	10	1ms	Immediate	Р		

0 ~ 65535ms

P08.60	Waiting time after the 11th	Range	Default	Unit	Effective	Relevant		ode
	segment completed	0 ~ 65535	0	1ms	Immediate	Р		

 $0 \sim 65535$ ms/s. The specific unit is set by P08.05.

	The 12th segment dis-	Range	Default	Unit	Effective	Relevant mode
P08.6	placement (32-bit)	-2147483646 ~ 2147483646	10000		Immediate	Р

A value between -2147483646 and 2147483646 can be set, and a positive setting indicates a positive position instruction, while a negative setting indicates a negative position instruction.

-	P08.63	The 12th segment maxi-	Range	Default	Unit	Effective	Rele	vant m	iode
ŀ		mum speed	1 ~ 9000	200	1rpm	Immediate	Р		

1 ~ 9000rpm

D00 / /	The 12th segment acceler-	Range	Default	Unit	Effective	Rele	vant n	node
P08.64	ation/deceleration time	0 ~ 65535	10	1ms	Immediate	Р		

0 ~ 65535ms

P08.6	Waiting time after the 12th	Range	Default	Unit	Effective	Rele	vant m	node
P06.0	segment completed	0 ~ 65535	0	1ms	Immediate	Р		

0 ~ 65535ms/s. The specific unit is set by P08.05.

		The 13th seament dis-	Range	Default	Unit	Effective	Relevant mode
P08	3.66	placement (32-bit)	-2147483646 ~ 2147483646	10000		Immediate	Р

A value between -2147483646 and 2147483646 can be set, and a positive setting indicates a positive position instruction, while a negative setting indicates a negative position instruction.

D00 / 0	The 13th segment maxi-	Range	Default	Unit	Effective	e Relev		node
P08.68	mum speed	1 ~ 9000	200	1rpm	Immediate	Р		

1 ~ 9000rpm

D00 (0	The 13th segment acceler-	Range	Default	Unit	Effective	Relev	vant m	node
P08.69	ation/deceleration time	0 ~ 65535	10	1ms	Immediate	Р		

0 ~ 65535ms

D00 70	Waiting time after the 13th	Range	Default	Unit	Effective	Rele	vant m	node
P08.70	segment completed	0 ~ 65535	0	1ms	Immediate	Р		

0 \sim 65535ms/s. The specific unit is set by P08.05.

	The 14th segment dis-	Range	Default	Unit	Effective	Relevant mode
P08.71	placement (32-bit)	-2147483646 ~ 2147483646	10000		Immediate	Р

A value between -2147483646 and 2147483646 can be set, and a positive setting indicates a positive position instruction, while a negative setting indicates a negative position instruction.

D00 70	The 14th segment maxi-	Range	Default	Unit	Effective	Relevar		node
P08.73	mum speed	1 ~ 9000	200	1rpm	Immediate	Р		

1 ~ 9000rpm

P08.74	The 14th segment acceler-	Range	Default	Unit	Effective	Rele	vant n	node
P06.74	ation/deceleration time	0 ~ 65535	10	1ms	Immediate	Р		

0 ~ 65535ms

D00.75	Waiting time after the 14th	Range	Default	Unit	Effective	Releva	nt mode
P08.75	segment completed	0 ~ 65535	0	1ms	Immediate	Р	

$0 \sim 65535$ ms/s. The specific unit is set by P08.05.

	The 15th segment dis-	Range	Default	Unit	Effective	Relevant mode
P08.76	placement (32-bit)	-2147483646 ~ 2147483646	10000		Immediate	Р

A value between -2147483646 and 2147483646 can be set, and a positive setting indicates a positive position instruction, while a negative setting indicates a negative position instruction.

P08.78	The 15th segment maxi-	Range	Default	Unit	Effective	Relevant m		node
	mum speed	1 ~ 9000	200	1rpm	Immediate	Р		

1 ~ 9000rpm

P08.79	The 15th segment acceler-	Range	Default	Unit	Effective	Relevant m	ode
	ation/deceleration time	0 ~ 65535	10	1ms	Immediate	Р	

0 ~ 65535ms

P08.80	Waiting time after the 15th	Range	Default	Unit	Effective	Rele	vant m	ode
	segment completed	0 ~ 65535	0	1ms	Immediate	Р		

0 \sim 65535ms/s. The specific unit is set by P08.05.

	The 16th segment dis-	Range	Default	Unit	Effective	Rele	vant n	node
P08.81	placement (32-bit)	-2147483646 ~ 2147483646	10000		Immediate	Р		

A value between -2147483646 and 2147483646 can be set, and a positive setting indicates a positive position instruction, while a negative setting indicates a negative position instruction.

P08.83	The 16th segment maxi-	Range	Default	Unit	Effective	Relevant mo		node
	mum speed	1 ~ 9000	200	1rpm	Immediate	Р		

1 ~ 9000rpm

D00.07	The 16th segment acceler-	Range	Default	Unit	Effective	Relevant		node
P08.84	ation/deceleration time	0 ~ 65535	10	1ms	Immediate	Р		

0 ~ 65535ms

P08.85	Waiting time after the 16th	Range	Default	Unit	Effective	Relevant r		node
	segment completed	0 ~ 65535	0	1ms	Immediate	Р		

0 \sim 65535ms/s. The specific unit is set by P08.05.

P08.86	Position instruction inter-	Range	Default	Unit	Effective	Relevant mo		node
	rupt execution setting	0 ~ 4	0		Restart	Р		

- 0: Disable the function of robbing execution;
- 1: Enable, interrupt at the rising edge of the DI signal, and automatically release the interrupt lock state after completion;
- 2: Enable, interrupt at the rising edge of the DI signal, and release the interrupt lock state by DI signal INTP_ULK after com¬pletion;
 - 3: Enable, interrupt at the falling edge of the DI signal, and automatically release the interrupt lock state after completion;
- 4: Enable, interrupt at the falling edge of the DI signal, and release the interrupt lock state by DI signal INTP_ULK after completion.

P08.88	11	Range	Default	Unit	Effective	Rele	vant n	node
	Homing start method	0 ~ 4	0		Restart	Р		

- 0: Disable
- 1: Enable by DI function STHOME
- 2: Enable by key
- 3: Enable by communication
- 4: Enable immediately after powering on the servo ON for the first time

D00.00	Hamira a ara da	Range	Default	Unit	Effective	Relev	vant m	node
P08.89	Homing mode	0 ~ 8	2		Restart	Р		

- 0: Forward rotation to search for the origin, with the positive limit as the origin
- 1: Reverse rotation to search for the origin, with the negative limit as the origin
- 2: Forward rotation to search for the origin, with the HOME_IN signal OFF \rightarrow ON as the origin
- 3: Reverse rotation to search for the origin, with the HOME_IN signal OFF \rightarrow ON as the origin
- 4: Forward rotation to search for the origin, with the HOME_IN signal ON → OFF as the origin
- 5: Reverse rotation to search for the origin, with the HOME_IN signal ON \rightarrow OFF as the origin
- 6: Forward rotation to directly search for the nearest Z signal as the origin
- 7: Reverse rotation to directly search for the nearest Z signal as the origin
- 8: Directly use the current position as the origin

	Limit switch and z-phase	Range	Default	Unit	Effective	Rele	vant n	node
P08.90	signal setting when hom-	0 ~ 5	2		Restart	Р		

The meaning of the set values is as follows:

0: Homing mode 0 \sim 1: When the other side of the limit is encountered, it will stop and alarm (AL.096), and return to find the Z signal.

Homing mode 2 \sim 5: When the limit position is encountered, it will automatically return to the reverse direction to find the Z signal.

Homing mode 6 \sim 7: When the limit position is encountered, it will automatically return to the reverse direction and go forward to search for the Z signal.

1: Homing mode 0 \sim 1: When the other side of the limit is encountered, it will stop and alarm (AL.096), and return to find the Z signal.

Homing mode $2 \sim 5$: When the limit position is encountered, it will automatically return to the reverse direction to find the Z signal.

Homing mode 6 ~ 7: When the limit position is encountered, it will directly go forward to search for the Z signal.

2: Homing mode 0 \sim 1: When the other side of the limit is encountered, it will stop and alarm (AL.096), and not find the Z signal.

Homing mode $2 \sim 5$: When the limit position is encountered, it will automatically return to the reverse direction and not find the Z signal.

Homing mode 6 \sim 7: When the limit position is encountered, it will automatically return to the reverse direction and go forward to search for the Z signal.

3: Homing mode 0 \sim 1: When the other side of the limit is encountered, it will stop and alarm (AL.096), and return to find the Z signal.

Homing mode 2 ~ 5: When the limit position is encountered, it will stop and alarm and return to find the Z signal.

Homing mode 6 \sim 7: When the limit position is encountered, it will stop and alarm and go forward to search for the Z sig¬nal.

4: Homing mode 0 \sim 1: When the other side of the limit is encountered, it will stop and alarm (AL.096), and return to find the Z signal.

Homing mode 2 \sim 5: When the limit position is encountered, it will stop and alarm and go forward to search for the Z sig¬nal.

Homing mode 6 \sim 7: When the limit position is encountered, it will stop and alarm and go forward to search for the Z sig¬nal.

5: Homing mode 0 ~ 1: When the other side of the limit is encountered, it will stop and alarm and not find the Z signal.

Homing mode 2 ~ 5: When the limit position is encountered, it will stop and alarm and not find the Z signal.

Homing mode 6 \sim 7: When the limit position is encountered, it will stop and alarm and go forward to search for the Z sig¬nal.

P08.92	O-i-i bi-b	Range	Default	Unit	Effective	Relev	vant m	ode
	Origin search high speed	1 ~ 3000	500	1rpm	Immediate	Р		

1 ~ 3000rpm.

After the homing process is started, the search for the origin begins at this speed unless a deceleration signal or an origin position signal is already present at the start.

D00.00	Ovinin annual law annual	Range	Default	Unit	Effective	Rele	vant n	node
P08.93	Origin search low speed	1 ~ 300	50	1rpm	Immediate	Р		

1 ~ 300rpm.

When searching for the origin, switch to a low-speed search after encountering a deceleration point, or after encountering the origin position.

	Acceleration/deceleration	Range	Default	Unit	Effective	Rele	vant n	node
P08.94	time during origin search-	1 ~ 10000	500	1ms	Immediate	D		
	ing	1 10000	300	11115	Illillediate	F		

1 ~ 10000ms

P08.95	I I a martin an Atina a Himata	Range	Default	Unit	Effective	Rele	vant n	node
	Homing time limit	1 ~ 65535	60000	1ms	Immediate	Р		

1 ~ 65535ms.

Set the limit time for the origin return process, if the origin is not searched after this time, the search for the origin is stopped and the alarm AL.96 will occur. If the limit time set here is still not enough, the multiplication of the limit time can be set by the 1st digit from the right of P07.08. When digit 1 from the right of P07.08 is not 0, the actual limit time is the product of this value, and digit 1 from the right of P07.08.

		Range	Default	Unit	Effective	Relevant mode
P08.96	Origin offset (32-bit)	-2147483646 ~ 2147483646	0		Immediate	Р

Range: -2147483646 ~ 2147483646

It is used to adjust the value of the origin coordinates.

Note: It is only used for adjusting coordinate and does not affect the actual origin position.

	Mechanical origin offset	Range	Default	Unit	Effective	Relev	vant m	iode
P08.9	(32-bit)	-2147483646 ~ 2147483646	0		Immediate	Р		

Range: -2147483646 ~ 2147483646

It is used to move a distance after the origin position has been found

P09 Communication setting

P09.00		Range	Default	Unit	Effective	Rele	vant n	node
	Servo axis address number	1 ~ 247	1		Immediate	Р	S	Т

 $1 \sim 247$, 0 is the broadcast address.

It is used for communication and supports Modbus, CANOpen, and so on.

P09.01	Ma allacca la accal cast a	Range	Default	Unit	Effective	Rele	vant n	node
	Modbus baud rate	0 ~ 6	2		Immediate	Р	S	Т

The supported baud rates and for settings are as follows:

- 0: 2400
- 1: 4800
- 2: 9600
- 3: 19200
- 4: 38400
- 5: 57600
- 6: 115200

P09.02	Madlana data fannat	Range	Default	Unit	Effective	Rele	vant n	node
	Modbus data format	0 ~ 3	0		Immediate	Р	S	Т

- 0: No parity, 2 stop bit
- 1: Even, 1 stop bit
- 2: Odd, 1 stop bit
- 3: No parity, 1 stop bit

P09.03		Range	Default	Unit	Effective	Rele	vant n	node
	Communication timeout	0 ~ 9999	0	1ms	Immediate	Р	S	Т

Monitor the communication busbar for data for a set period of time.

P09.04	Communication response	Range	Default	Unit	Effective	Relevant r		node
	delay	0 ~ 9999	0	1ms	Immediate	Р	S	Т

Respond after delaying for a set period of time after receiving data.

P09.05	Communication DI en-	Range	Default	Unit	Effective	Rele	Relevant m	
	abling setting 1	0000H ~ FFFFH	0		Restart	Р	S	Т

This parameter is displayed in hexadecimal form on the panel, where each binary bit indicates a DI function, BIT0 is reserved, BIT0 \sim BIT15 corresponds to DI functions 1 \sim 15 respectively. The value of the binary bit indicates whether to enable the communication control of the corresponding DI function:

0: Not enabled;

1: Enabled

Refer to section 10.3 of this manual for detailed instructions.

P09.06	Communication DI en-	Range	Default	Unit	Effective	Relevant		node
	abling setting 2	0000H ~ FFFFH	0		Restart	Р	S	Т

This parameter is displayed in hexadecimal form on the panel, where each binary bit indicates a DI function, BIT0 is reserved, BIT0 \sim BIT15 corresponds to DI functions 16 \sim 31 respectively. The value of the binary bit indicates whether to enable the communication control of the corresponding DI function:

0: Not enabled;

1: Enabled

Refer to section 10.3 of this manual for detailed instructions.

P09.07	Communication DI en-	Range	Default	Unit	Effective	Relevant n		node
	abling setting 3	0000H ~ FFFFH	0		Restart	Р	S	Т

This parameter is displayed in hexadecimal form on the panel, where each binary bit indicates a DI function, BIT0 \sim BIT15 corresponds to DI functions 32 \sim 47 respectively. The value of the binary bit indicates whether to enable the communication control of the corresponding DI function:

0: Not enabled;

1: Enabled

Refer to section 10.3 of this manual for detailed instructions.

P09.08	Communication DI en-	Range	Default	Unit	Effective	Relevant mo		node
	abling setting 4	0000H ~ FFFFH	0		Restart	Р	S	Т

This parameter is displayed in hexadecimal form on the panel, where each binary bit indicates a DI function, BITO ~ BIT15 corresponds to DI functions 48 ~ 63 respectively. The value of the binary bit indicates whether to enable the communication control of the corresponding DI function:

0: Not enabled:

1: Enabled

Refer to section 10.3 of this manual for detailed instructions.

P09.09	Communication DO en-	Range	Default	Unit	Effective	Relevant m		node
	abling setting 1	0000H ~ FFFFH	0		Restart	Р	S	Т

This parameter is displayed in hexadecimal form on the panel, where each binary bit indicates a DO function, BIT0 is reserved, BIT0 \sim BIT15 corresponds to DO functions 1 \sim 15 respectively. The value of the binary bit indicates whether to enable the communication control of the corresponding DO function:

0: Not enabled:

1: Enabled

Refer to section 10.4 of this manual for detailed instructions.

P09.10	Communication DO en-	Range	Default	Unit	Effective	Relevant r		node
	abling setting 2	0000H ~ FFFFH	0		Restart	Р	S	Т

This parameter is displayed in hexadecimal form on the panel, where each binary bit indicates a DO function, BIT0 \sim BIT15 corresponds to DO functions 16 \sim 31 respectively. The value of the binary bit indicates whether to enable the communication control of the corresponding DO function:

0: Not enabled;

1: Enabled

Refer to section 10.4 of this manual for detailed instructions.

P09.11	Communication instruction	Range	Default	Unit	Effective	Relevant		node
	holding time	0 ~ 60	5		Immediate	Р	S	Т

The time to maintain the original state when communication is disconnected after the command value is written to the communication can be set from 0 to 60 in seconds. Set to 0 means 0.5 seconds.

	Select to enable AO func-	Range	Default	Unit	Effective	Relevar		node
P09.12	tion or CAN communica-	0000H ~ FFFFH	0		Restart	D	_	
	tion	0000H ~ FFFFH	U		Restart	P)	'

Hexadecimal numbers, from right to left:

Digit 1:

0: Enable CANOpen communication

1: Enable AO function

P09.13	Bus communication con-	Range	Default	Unit	Effective	Relevant m		node
	figuration 1	0000H ~ FFFFH	5		Restart	Р	S	Т

Hexadecimal numbers, from right to left:

Digit 1, CAN communication baud rate:

0: 20k; 1: 50k; 2: 100k; 3: 125k;

4: 250k; 5: 500k; 6: 800k; 7: 1M

0: Drive setting; 1: Master setting.

Digit 2: Electronic gear ratio selection

Digit 3: Speed unit setting

0: Use internal unit

1: Use user unit

Digit 4: Acceleration unit setting

0: Use internal unit

1: Use user unit

P09.14	Bus communication con-	Range	Default	Unit	Effective	Relevant		node
	figuration 2	0000H ~ FFFFH	0		Restart	Р	S	Т

Hexadecimal numbers, from right to left (EtherCAT):

Digit 2: Absolute system (P06.47=2) origin completion flag storage setting

0: Not to store

1: Store

P09.15	Bus communication con-	Range	Default	Unit	Effective	Relevant m		node
	figuration 3	0 ~ 65535	0	ns	Immediate	Р	S	Т

Fine tuning synchronization jitter delay: value range -20~20

P10 CANOpen parameter group 1

D10.00	RPDO1 COB-ID	Range	Default	Unit	Effective	Relevant		node
P10.00	KPDO I COB-ID	0 ~ 65535	512		Restart	Р	S	Т

CANOpen object dictionary index 0x1400, subindex 0x1.

11-bit standard frame ID.

P10.01	RPDO1 configuration	Range	Default	Unit	Effective	Relevant		node
	parameter	0 ~ 65535	33023		Restart	Р	S	Т

CANOpen object dictionary index 0x1400.

High byte, subindex 0x1, COB-ID control bit for RPDO1.

Bit15, 1 or 0 indicates that RPDO1 is valid or invalid;

The remaining bits are reserved or unsupported and must be 0.

Low byte, subindex 0x2, transmission type.

0 to 240, synchronous;

254, asynchronous (manufacturer specified);

255, asynchronous (device protocol and application protocol specified);

The rest are reserved.

P10.02	RPDO2 COB-ID	Range	Default	Unit	Effective	Relevant		node
		0 ~ 65535	768		Restart	Р	S	Т

CANOpen object dictionary index 0x1401, subindex 0x1.

11-bit standard frame ID.

P10.03	RPDO2 configuration	Range	Default	Unit	Effective	Relevant m		node
	parameter	0 ~ 65535	33023		Restart	Р	S	Т

CANOpen object dictionary index 0x1401.

High byte, subindex 0x1, COB-ID control bit for RPDO2.

Low byte, sub-index 0x2, transmission type.

Refer to P10.01 for the meaning of the parameters.

D10.07	RPDO3 COB-ID	Range	Default	Unit	Effective	Relevant i		node
P10.04	KPDO3 COB-ID	0 ~ 65535	1024		Restart	Р	S	Т

CANOpen object dictionary index 0x1401, subindex 0x1.

11-bit standard frame ID.

P10.05	RPDO3 configuration	Range	Default	Unit	Effective	Relevant		node
	parameter	0 ~ 65535	33023		Restart	Р	S	Т

CANOpen object dictionary index 0x1402.

High byte, subindex 0x1, COB-ID control bit for RPDO3.

Low byte, sub-index 0x2, transmission type.

Refer to P10.01 for the meaning of the parameters.

D10.07	DDDO/ COD ID	Range	Default	Unit	Effective	Relevant m		node
P10.06	RPDO4 COB-ID	0 ~ 65535	1280		Restart	Р	S	Т

CANOpen object dictionary index 0x1403, subindex 0x1.

11-bit standard frame ID.

P10.07	RPDO4 configuration	Range	Default	Unit	Effective	Relevant r		node
	parameter	0 ~ 65535	33023		Restart	Р	S	Т

CANOpen object dictionary index 0x1403.

High byte, subindex 0x1, COB-ID control bit for RPDO4.

Low byte, sub-index 0x2, transmission type.

Refer to P10.01 for the meaning of the parameters.

P10.08	Number of valid RPDO1	Range	Default	Unit	Effective	Rele	Relevant mo		
	mapping parameters	0 ~ 8	1		Restart	Р	S	Т	

CANOpen object dictionary index 0x1600, subindex 0x0.

P10.09	RPDO1 mapping parame-	Range	Default	Unit	Effective	Releva		node
	ter 1 (32-bit)	0 ~ 2147483647	1614807056		Restart	Р	S	Т

CANOpen object dictionary index 0x1600, subindex 0x1.

Unsigned 32-bit number where the high 16 bits are the index of the dictionary object, the high byte in the low 16 bits is the subindex of the object, and the low byte is the data length (Bit) of the corresponding dictionary object.

P10.11	RPDO1 mapping parame-	Range	Default	Unit	Effective	Relevant i		node
	ter 2 (32-bit)	0 ~ 2147483647	0		Restart	Р	S	Т

CANOpen object dictionary index 0x1600, subindex 0x2.

P10.13	RPDO1 mapping parame-	Range	Default	Unit	Effective	Releva		node
	ter 3 (32-bit)	0 ~ 2147483647	0		Restart	Р	S	Т

CANOpen object dictionary index 0x1600, subindex 0x3.

P10.15	RPDO1 mapping parame-	Range	Default	Unit	Effective	Relevant n		node
	ter 4 (32-bit)	0 ~ 2147483647	0		Restart	Р	S	Т

CANOpen object dictionary index 0x1600, subindex 0x4.

P10.17	RPDO1 mapping parame-	Range	Default	Unit	Effective	Relevant		node
	ter 5 (32-bit)	0 ~ 2147483647	0		Restart	Р	S	Т

CANOpen object dictionary index 0x1600, subindex 0x5.

P10.19	RPDO1 mapping parame-	Range	Default	Unit	Effective	Relevant		node
	ter 6 (32-bit)	0 ~ 2147483647	0		Restart	Р	S	Т

CANOpen object dictionary index 0x1600, subindex 0x6.

P10.21	RPDO1 mapping parame-	Range	Default	Unit	Effective	Relevant r		node
	ter 7 (32-bit)	0 ~ 2147483647	0		Restart	Р	S	Т

CANOpen object dictionary index 0x1600, subindex 0x7.

P10.23	RPDO1 mapping parame-	Range	Default	Unit	Effective	Relevant		node
	ter 8 (32-bit)	0 ~ 2147483647	0		Restart	Р	S	Т

CANOpen object dictionary index 0x1600, subindex 0x8.

P10.25	Number of valid RPDO2	Range	Default	Unit	Effective	Relevant r		node
	mapping parameters	0 ~ 8	2		Restart	Р	S	Т

CANOpen object dictionary index 0x1601, subindex 0x0.

P10.26	RPDO2 mapping parame-	Range	Default	Unit	Effective	Relevan		node
	ter 1 (32-bit)	0 ~ 2147483647	1614807056		Restart	Р	S	Т

CANOpen object dictionary index 0x1601, subindex 0x1.

Unsigned 32-bit number where the high 16 bits are the index of the dictionary object, the high byte in the low 16 bits is the subindex of the object, and the low byte is the data length (Bit) of the corresponding dictionary object.

P10.28	RPDO2 mapping parame-	Range	Default	Unit	Effective	Relevant		node
	ter 2 (32-bit)	0 ~ 2147483647	1616904200		Restart	Р	S	Т

CANOpen object dictionary index 0x1601, subindex 0x2.

P10.30	RPDO2 mapping parame-	Range	Default	Unit	Effective	Relevan		node
	ter 3 (32-bit)	0 ~ 2147483647	0		Restart	Р	S	Т

CANOpen object dictionary index 0x1601, subindex 0x3.

P10.32	RPDO2 mapping parame-	Range	Default	Unit	Effective	Rele	vant n	node
	ter 4 (32-bit)	0 ~ 2147483647	0		Restart	Р	S	Т

CANOpen object dictionary index 0x1601, subindex 0x4.

P10.34	RPDO2 mapping parame-	Range	Default	Unit	Effective	Relevant		node
	ter 5 (32-bit)	0 ~ 2147483647	0		Restart	Р	S	Т

CANOpen object dictionary index 0x1601, subindex 0x5.

P10.36	RPDO2 mapping parame-	Range	Default	Unit	Effective	Relevant		node
	ter 6 (32-bit)	0 ~ 2147483647	0		Restart	Р	S	Т

CANOpen object dictionary index 0x1601, subindex 0x6.

P10.38	RPDO2 mapping parame-	Range	Default	Unit	Effective	Relevant		node
	ter 7 (32-bit)	0 ~ 2147483647	0		Restart	Р	S	Т

CANOpen object dictionary index 0x1601, subindex 0x7.

P10.40	RPDO2 mapping parame-	Range	Default	Unit	Effective	Relevant		node
	ter 8 (32-bit)	0 ~ 2147483647	0		Restart	Р	S	Т

CANOpen object dictionary index 0x1601, subindex 0x8.

P10.42	Number of RPDO3 valid	Range	Default	Unit	Effective	Relevant r		node
	mapping parameters	0 ~ 8	2		Restart	Р	S	Т

CANOpen object dictionary index 0x1602, subindex 0x0.

P10.43	RPDO3 mapping parame-	Range	Default	Unit	Effective	Relevant n		node
	ter 1 (32-bit)	0 ~ 2147483647	1614807056		Restart	Р	S	Т

CANOpen object dictionary index 0x1602, subindex 0x1.

Unsigned 32-bit number where the high 16 bits are the index of the dictionary object, the high byte in the low 16 bits is the subindex of the object, and the low byte is the data length (Bit) of the corresponding dictionary object.

P10.45	RPDO3 mapping parame-	Range	Default	Unit	Effective	Releva		node
P10.45	ter 2 (32-bit)	0 ~ 2147483647	1618608160		Restart	Р	S	Т

CANOpen object dictionary index 0x1602, subindex 0x2.

D10 / 7	RPDO3 mapping parame-	Range	Default	Unit	Effective	Relevar		node
P10.47	ter 3 (32-bit)	0 ~ 2147483647	0		Restart	Р	S	Т

CANOpen object dictionary index 0x1602, subindex 0x3.

P11 CANOpen parameter group 2

P11.00	RPDO3 mapping parame-	Range	Default	Unit	Effective	Relevant		node
	ter 4 (32-bit)	0 ~ 2147483647	0		Restart	Р	S	Т

CANOpen object dictionary index 0x1602, subindex 0x4.

P11.02	RPDO3 mapping parame-	Range	Default	Unit	Effective	Relevant		node
	ter 5 (32-bit)	0 ~ 2147483647	0		Restart	Р	S	Т

CANOpen object dictionary index 0x1602, subindex 0x5.

P11.04	RPDO3 mapping parame-	Range	Default	Unit	Effective	Relevant		node
	ter 6 (32-bit)	0 ~ 2147483647	0		Restart	Р	S	Т

CANOpen object dictionary index 0x1602, subindex 0x6.

P11.06	RPDO3 mapping parame-	Range	Default	Unit	Effective	Relevant		node
	ter 7 (32-bit)	0 ~ 2147483647	0		Restart	Р	S	Т

CANOpen object dictionary index 0x1602, subindex 0x7.

P11.08	RPDO3 mapping parame-	Range	Default	Unit	Effective	Relevant		node
	ter 8 (32-bit)	0 ~ 2147483647	0		Restart	Р	S	Т

CANOpen object dictionary index 0x1602, subindex 0x8.

P11.10	Number of RPDO4 valid	Range	Default	Unit	Effective	Rele	node
	mapping parameters	0 ~ 8	2		Restart	Р	S

CANOpen object dictionary index 0x1603, subindex 0x0.

P11.11	RPDO4 mapping parame-	Range	Default	Unit	Effective	Releva		node
P11.11	ter 1 (32-bit)	0 ~ 2147483647	1614807056		Restart	Р	S	Т

CANOpen object dictionary index 0x1603, subindex 0x1.

Unsigned 32-bit number where the high 16 bits are the index of the dictionary object, the high byte in the low 16 bits is the subindex of the object, and the low byte is the data length (Bit) of the corresponding dictionary object.

P11.13	RPDO4 mapping parame-	Range	Default	Unit	Effective	Releva		node
	ter 2 (32-bit)	0 ~ 2147483647	1627324448		Restart	Р	S	Т

CANOpen object dictionary index 0x1603, subindex 0x2.

P11.15	RPDO4 mapping parame-	Range	Default	Unit	Effective	Relevant		node
	ter 3 (32-bit)	0 ~ 2147483647	0		Restart	Р	S	Т

CANOpen object dictionary index 0x1603, subindex 0x3.

P11.17	RPDO4 mapping parame-	Range	Default	Unit	Effective	Relevant		node
	ter 4 (32-bit)	0 ~ 2147483647	0		Restart	Р	S	Т

CANOpen object dictionary index 0x1603, subindex 0x4.

P11.19	RPDO4 mapping parame-	Range	Default	Unit	Effective	Relevant		node
	ter 5 (32-bit)	0 ~ 2147483647	0		Restart	Р	S	Т

CANOpen object dictionary index 0x1603, subindex 0x5.

P11.21	RPDO4 mapping parame-	Range	Default	Unit	Effective	Rele	node
	ter 6 (32-bit)	0 ~ 2147483647	0		Restart	Р	S

CANOpen object dictionary index 0x1603, subindex 0x6.

P11.23	RPDO4 mapping parame-	Range	Default	Unit	Effective	Relevant		node
	ter 7 (32-bit)	0 ~ 2147483647	0		Restart	Р	S	Т

CANOpen object dictionary index 0x1603, subindex 0x7.

P11.25	RPDO4 mapping parame-	Range	Default	Unit	Effective	Relevant		node
	ter 8 (32-bit)	0 ~ 2147483647	0		Restart	Р	S	Т

CANOpen object dictionary index 0x1603, subindex 0x8.

P11.30	TPDO1 COB-ID	Range	Default	Unit	Effective	Relevant m		node
		0 ~ 65535	384		Restart	Р	S	Т

CANOpen object dictionary index 0x1800, subindex 0x1.

11-bit standard frame ID.

P11.31	TPDO1 configuration	Range	Default	Unit	Effective	Relevant m		node
	parameter	0 ~ 65535	33023		Restart	Р	S	Т

CANOpen object dictionary index 0x1800.

High byte, subindex 0x1, COB-ID control bit for TPDO1.

Bit15, 1 or 0, indicates that TPDO1 is valid or invalid;

Bit14, 1 or 0, indicates that TPDO1 is not allowed or RTR (remote framing) is allowed;

The remaining bits are reserved or unsupported and must be 0.

Low byte, subindex 0x2, transmission type.

0 to 240, Synchronization;

252, RTR synchronization;

253, RTR event driven;

254, asynchronous (manufacturer specified);

255, asynchronous (device protocol and application protocol specified);

The rest are reserved.

P11.32	TPDO1 disable time	Range	Default	Unit	Effective	Relevant i		node
		0 ~ 65535	200		Restart	Р	S	Т

CANOpen object dictionary index 0x1800, subindex 0x3.

P11.33	Event timer for TPDO1	Range	Default	Unit	Effective	Relevan		ant mode	
		0 ~ 65535	25		Restart	Р	S	Т	

CANOpen object dictionary index 0x1800, subindex 0x5.

D11 2/	TPDO2 COB-ID	Range	Default	Unit	Effective	Relevant		node
P11.34	TPDO2 COB-ID	0 ~ 65535	640		Restart	Р	S	Т

CANOpen object dictionary index 0x1801, subindex 0x1.

11-bit standard frame ID

P11.35	TPDO2 configuration	Range	Default	Unit	Effective	Relevant mo		node
	parameter	0 ~ 65535	33023		Restart	Р	S	Т

CANOpen object dictionary index 0x1801.

High byte, subindex 0x1, COB-ID control bit for TPDO2.

Low byte, sub-index 0x2, transmission type.

Refer to P11.31 for the meaning of the parameters.

D11 24	TPDO2 ban time	Range	Default	Unit	Effective	Relevant		node
P11.36	1PDO2 ban time	0 ~ 65535	200		Restart	Р	S	Т

CANOpen object dictionary index 0x1802, subindex 0x3.

D11 27	TPDO2 event timer	Range	Default	Unit	Effective	Relevant r		node
P11.37	1PDO2 event timer	0 ~ 65535	25		Restart	Р	S	Т

CANOpen object dictionary index 0x1802, subindex 0x5.

P11.38	TDDO2 COD ID	Range	Default	Unit	Effective	Relevar		node
P11.38	TPDO3 COB-ID	0 ~ 65535	896		Restart	Р	S	Т

CANOpen object dictionary index 0x1802, subindex 0x1.

11-bit standard frame ID

P11.39	TPDO3 configuration	Range	Default	Unit	Effective	Relevant r		node
	parameter	0 ~ 65535	33023		Restart	Р	S	Т

CANOpen object dictionary index 0x1802.

High byte, subindex 0x1, COB-ID control bit for TPDO3.

Low byte, sub-index 0x2, transmission type.

Refer to P11.31 for the meaning of the parameters.

P11.40	TDDO2 han time	Range	Default	Unit	Effective	Relevant n		node
P11.40	TPDO3 ban time	0 ~ 65535	200		Restart	Р	S	Т

CANOpen object dictionary index 0x1802, subindex 0x3.

D11 /1	TDDO2 avent times	Range	Default	Unit	Effective	Relevant		node
P11.41	TPDO3 event timer	0 ~ 65535	25		Restart	Р	S	Т

CANOpen object dictionary index 0x1802, subindex 0x5.

P11.42	TPDO4 COB-ID	Range	Default	Unit	Effective	Relevant r		node
		0 ~ 65535	1152		Restart	Р	S	Т

CANOpen object dictionary index 0x1803, subindex 0x1.

11-bit standard frame ID.

P11.43	TPDO4 configuration	Range	Default	Unit	Effective	Relevant		node
	parameter	0 ~ 65535	33023		Restart	Р	S	Т

CANOpen object dictionary index 0x1803.

High byte, subindex 0x1, COB-ID control bit for TPDO4.

Low byte, sub-index 0x2, transmission type.

Refer to P11.31 for the meaning of the parameters.

P11.44	TPDO4 ban time	Range	Default	Unit	Effective	Relevant		node
		0 ~ 65535	200		Restart	Р	S	Т

CANOpen object dictionary index 0x1803, subindex 0x3.

D11 / F	TDDO/ avant times	Range	Default	Unit	Effective	Relevant		node
P11.45	TPDO4 event timer	0 ~ 65535	25		Restart	Р	S	Т

CANOpen object dictionary index 0x1803, subindex 0x5.

P12 CANOpen parameter group 3

P12.00	Number of TPDO1valid	Range	Default	Unit	Effective	Relevan		node
	mapping parameters	0 ~ 8	1		Restart	Р	S	Т

CANOpen object dictionary index 0x1A00, subindex 0x0.

P12.01	TPDO1 mapping parameter	Range	Default	Unit	Effective	Rele	vant n	node
	1 (32-bit)	0 ~ 2147483647	1614872592		Restart	Р	S	Т

CANOpen object dictionary index 0x1A00, subindex 0x1.

Unsigned 32-bit number where the high 16 bits are the index of the dictionary object, the high byte in the low 16 bits is the subindex of the object, and the low byte is the data length (Bit) of the corresponding dictionary object.

P12.03	TPDO1 mapping parameter	Range	Default	Unit	Effective	Rele	vant n	node
	12.03	2 (32-bit)	0 ~ 2147483647	0		Restart	Р	S

CANOpen object dictionary index 0x1A00, subindex 0x2.

P12.05	TPDO1 mapping parameter	Range	Default	Unit	Effective	Rele	vant n	node
	3 (32-bit)	0 ~ 2147483647	0		Restart	Р	S	Т

CANOpen object dictionary index 0x1A00, subindex 0x3.

P12.07	, TPDO1 mapping parameter	Range	Default	Unit	Effective	Rele	vant n	node
	4 (32-bit)	0 ~ 2147483647	0		Restart	Р	S	Т

CANOpen object dictionary index 0x1A00, subindex 0x4.

P12.09	TPDO1 mapping parameter	Range	Default	Unit	Effective	Relevant n		node
P12.09	5 (32-bit)	0 ~ 2147483647	0		Restart	Р	S	Т

CANOpen object dictionary index 0x1A00, subindex 0x5.

P12.11	TPDO1 mapping parameter	Range	Default	Unit	Effective	Relevant m		node
	6 (32-bit)	0 ~ 2147483647	0		Restart	Р	S	Т

CANOpen object dictionary index 0x1A00, subindex 0x6.

P12.13	TPDO1 mapping parameter	Range	Default	Unit	Effective	Releva		node
	7 (32-bit)	0 ~ 2147483647	0		Restart	Р	S	Т

CANOpen object dictionary index 0x1A00, subindex 0x7.

P12.15	TPDO1 mapping parameter	Range	Default	Unit	Effective	Releva		node
	8 (32-bit)	0 ~ 2147483647	0		Restart	Р	S	Т

CANOpen object dictionary index 0x1A00, subindex 0x8.

P12.17	Number of TPDO2 valid	Range	Default	Unit	Effective	Relevant		node
	mapping parameters	0 ~ 8	2		Restart	Р	S	Т

CANOpen object dictionary index 0x1A01, subindex 0x0.

P12.18	TPDO2 mapping parameter	Range	Default	Unit	Effective	Rele	Relevant mod	
P12.10	1 (32-bit)	0 ~ 2147483647	1614872592		Restart	Р	S	Т

CANOpen object dictionary index 0x1A01, subindex 0x1.

Unsigned 32-bit number where the high 16 bits are the index of the dictionary object, the high byte in the low 16 bits is the subindex of the object, and the low byte is the data length (Bit) of the corresponding dictionary object.

P12.20	TPDO2 mapping parameter	Range	Default	Unit	Effective	Releva		Relevant		node
	2 (32-bit)	0 ~ 2147483647	1616969736		Restart	Р	S	Т		

CANOpen object dictionary index 0x1A01, subindex 0x2.

P12.22	TPDO2 mapping parameter	Range	Default	Unit	Effective	e Rele		Relevant mo		node
	3 (32-bit)	0 ~ 2147483647	0		Restart	Р	S	Т		

CANOpen object dictionary index 0x1A01, subindex 0x3.

P12.24	TPDO2 mapping parameter	Range	Default	Unit	Effective	Rele	vant n	node
	4 (32-bit)	0 ~ 2147483647	0		Restart	Р	S	Т

CANOpen object dictionary index 0x1A01, subindex 0x4.

P12.26	TPDO2 mapping parameter	Range	Default	Unit	Effective	Rele	vant n	node
	5 (32-bit)	0 ~ 2147483647	0		Restart	Р	S	Т

CANOpen object dictionary index 0x1A01, subindex 0x5.

P12.28	TPDO2 mapping parameter	Range	Default	Unit	Effective	Rele	vant n	node
	6 (32-bit)	0 ~ 2147483647	0		Restart	Р	S	Т

CANOpen object dictionary index 0x1A01, subindex 0x6.

P12.30	TPDO2 mapping parameter	Range	Default	Unit	Effective	Rele	vant n	node
	7 (32-bit)	0 ~ 2147483647	0		Restart	Р	S	Т

CANOpen object dictionary index 0x1A01, subindex 0x7.

P12.32	TPDO2 mapping parameter	Range	Default	Unit	Effective	Relevant		node
	8 (32-bit)	0 ~ 2147483647	0		Restart	Р	S	Т

CANOpen object dictionary index 0x1A01, subindex 0x8.

P12.34	Number of TPDO3 valid	Range	Default	Unit	Effective	Relevant		node
	mapping parameters	0 ~ 8	2		Restart	Р	S	Т

CANOpen object dictionary index 0x1A02, subindex 0x0.

P12.35	TPDO3 mapping parameter	Range	Default	Unit	Effective	Rele	vant n	node
	1 (32-bit)	0 ~ 2147483647	1614872592		Restart	Р	S	Т

CANOpen object dictionary index 0x1A02, subindex 0x1.

Unsigned 32-bit number where the high 16 bits are the index of the dictionary object, the high byte in the low 16 bits is the subindex of the object, and the low byte is the data length (Bit) of the corresponding dictionary object.

P12.37	TPDO3 mapping parameter	Range	Default	Unit	Effective	Rele	vant n	node
	2 (32-bit)	0 ~ 2147483647	1617166368		Restart	Р	S	Т

CANOpen object dictionary index 0x1A02, subindex 0x2.

P12.39	TPDO3 mapping parameter	Range	Default	Unit	Effective	Relevant		node
	3 (32-bit)	0 ~ 2147483647	0		Restart	Р	S	Т

CANOpen object dictionary index 0x1A02, subindex 0x3.

P12.41	TPDO3 mapping parameter	Range	Default	Unit	Effective	Rele	vant n	node
	4 (32-bit)	0 ~ 2147483647	0		Restart	Р	S	Т

CANOpen object dictionary index 0x1A02, subindex 0x4.

P12.43	TPDO3 mapping parameter	Range	Default	Unit	Effective	Rele	vant n	node
	5 (32-bit)	0 ~ 2147483647	0		Restart	Р	S	Т

CANOpen object dictionary index 0x1A02, subindex 0x5.

P12.45	TPDO3 mapping parameter	Range	Default	Unit	Effective	Rele	vant n	node
	6 (32-bit)	0 ~ 2147483647	0		Restart	Р	S	Т

CANOpen object dictionary index 0x1A02, subindex 0x6.

P12.47	TPDO3 mapping parameter	Range	Default	Unit	Effective	Rele	vant n	node
	7 (32-bit)	0 ~ 2147483647	0		Restart	Р	S	Т

CANOpen object dictionary index 0x1A02, subindex 0x7.

P13 CANOpen parameter group 4

P13.00	TPDO3 mapping parameter	Range	Default	Unit	Effective	Relevant r		node
	8 (32-bit)	0 ~ 2147483647	0		Restart	Р	S	Т

CANOpen object dictionary index 0x1A02, subindex 0x8.

P13.02	Number of TPDO4 valid	Range	Default	Unit	Effective	Relevant m		node
	mapping parameters	0 ~ 8	2		Restart	Р	S	Т

CANOpen object dictionary index 0x1A03, subindex 0x0.

P13.03	TPDO4 mapping parameter	Range	Default	Unit	Effective	Rele	vant n	node
	1 (32-bit)	0 ~ 2147483647	1614872592		Restart	Р	S	Т

CANOpen object dictionary index 0x1A03, subindex 0x1.

Unsigned 32-bit number where the high 16 bits are the index of the dictionary object, the high byte in the low 16 bits is the subindex of the object, and the low byte is the data length (Bit) of the corresponding dictionary object.

P13.05	TPDO4 mapping parameter	Range	Default	Unit	Effective	Relevant		node
	2 (32-bit)	0 ~ 2147483647	1617690656		Restart	Р	S	Т

CANOpen object dictionary index 0x1A03, subindex 0x2.

D12.07	TPDO4 mapping parameter	Range	Default	Unit	Effective	Rele	vant n	node
P13.07	3 (32-bit)	0 ~ 2147483647	0		Restart	Р	S	Т

CANOpen object dictionary index 0x1A03, subindex 0x3.

P13.09	TPDO4 mapping parameter	Range	Default	Unit	Effective	Relevant		node
	4 (32-bit)	0 ~ 2147483647	0		Restart	Р	S	Т

CANOpen object dictionary index 0x1A03, subindex 0x4.

P13.11	TPDO4 mapping parameter	Range	Default	Unit	Effective	Relevan		node
	5 (32-bit)	0 ~ 2147483647	0		Restart	Р	S	Т

CANOpen object dictionary index 0x1A03, subindex 0x5.

P13.13	TPDO4 mapping parameter	Range	Default	Unit	Effective	Relevant		node
P13.13	6 (32-bit)	0 ~ 2147483647	0		Restart	Р	S	Т

CANOpen object dictionary index 0x1A03, subindex 0x6.

P13.15	TPDO4 mapping parameter	Range	Default	Unit	Effective	Relevant		node
	7 (32-bit)	0 ~ 2147483647	0		Restart	Р	S	Т

CANOpen object dictionary index 0x1A03, subindex 0x7.

P13.17	TPDO4 mapping parameter	Range	Default	Unit	Effective	Releva		node
	8 (32-bit)	0 ~ 2147483647	0		Restart	Р	S	Т

P17 Expansion position control function

P17.00	External encoder usage	Range	Default	Unit	Effective	Relevant r		node
		0 ~ 2	0	_	Restart	Р		

- 0: No external encoder is used for position feedback
- 1: When using external encoder as position feedback, the external encoder count is increased when the motor direction is CCW.
 - 2: External encoder is used as position feedback; the external encoder count is increased when the motor direction is CW.

P17.01	External encoder pitch	Range	Default	Unit	Effective	Relevant r		ode
	(32-bit)	0 ~ 1073741824	10000	_	Restart	Р		

Set the number of feedback pulses from the external encoder for one revolution of the motor:

0 ~ 1073741824

P17.03	Full-closed mixed deviation	Range	Default	Unit	Effective	Rele	vant m	ode
	threshold(32-bit)	0 ~ 1073741824	0	_	Immediate	Р		

0 ~ 1073741824

P17.05	Mixed deviation counting	Range	Default	Unit	Effective	Relev	/ant m	node
	setting	0 ~ 1073741824	0	0.01	Restart	Р		

0~100%

P17.06	Mixed vibration suppres-	Range	Default	Unit	Effective	Relev	vant m	node
	sion gain	0 ~ 30000	400	0.1/s	Immediate	Р		

1.0 ~ 3000.0/s

P17.07	Mixed vibration suppres-	Range	Default	Unit	Effective	Relevant		node
P17.07	sion time constant	0 ~ 30000	0	0.1ms	Immediate	Р		

1.0 ~ 3000.0/s

	External units for full	Range	Default	Unit	Effective	Relevant		iode
P17.09	closed loop mixed devia-	-1073741824 ~	0	_	Display only	2		
	tion (32-bit)	1073741824				Ρ Ρ		

-1073741824 ~ 1073741824

	External units for internal	Range	Default	Unit	Effective	Relevant n		node
P17.11	encoder count value (32-	-1073741824 ~	0	_	Display only	D		
	bit)	1073741824	U	_	Display only	Р		

-1073741824 ~ 1073741824

P17.13	External encoder count	Range	Default	Unit	Effective	Rele	vant m	node
	value (32-bit)	-1073741824 ~ 1073741824	0	_	Display only	Р		

-1073741824 ~ 1073741824

P17.16	Position comparison	Range	Default	Unit	Effective	Relevant m		node
	output mode	0000H ~ 0003H	0	_	Restart	Р		

Range: 0 ~ 3,

- 0: Disable
- 1: Forward trigger,
- 2: Reverse trigger,
- 3: Bi-directional trigger

"Position comparison" means that the value set by P17.17~ P17.23 is compared with the value of P21.07.

"Forward trigger" means "Absolute position feedback" (from small to large).

		Range	Default	Unit	Effective	Relevant mo		node
P17.1	The first position (32-bit)	-1073741824 ~	0	_	Restart	D		
		1073741824	U	_	Restart			

-1073741824 ~ 1073741824

P17.19	The second position (32-bit)	Range	Default	Unit	Effective	Rele	Relevant mod		
		-1073741824 ~ 1073741824	0	_	Immediate	Р			

-1073741824 ~ 1073741824

		Range	Default	Unit	Effective	Rele	Relevant mod	
P17.21	The third position (32-bit)	-1073741824 ~	0	_	Immediate	D		
		1073741824	U	_	ininediate			

-1073741824 ~ 1073741824

	The fourth position (32-	Range	Default	Unit	Effective	Relevant m	node
P17.23	bit)	-1073741824 ~ 1073741824	0	_	Immediate	Р	

-1073741824 ~ 1073741824

P17.25	Signal effective time 1	Range	Default	Unit	Effective	Relevant m		node
		0 ~ 65535	0	1ms	Immediate	Р		

After the 1st position is reached, the effective signal is output from 0 to 65535ms.

D17.07	Signal effective time 2	Range	Default	Unit	Effective	Releva		ode
P17.26	Signal effective time 2	0 ~ 65535	0	1ms	Immediate	Р		

After the 1st position is reached, the effective signal is output from 0 to 65535ms.

D17.27	Signal officiative time 2	Range	Default	Unit	Effective	Relevant me		node
P17.27	Signal effective time 3	0 ~ 65535	0	1ms	Immediate	Р		

After the 1st position is reached, the effective signal is output from 0 to 65535ms.

D17.20	Signal effective time 4	Range	Default	Unit	Effective	Relevant		node
P17.28	Signal effective time 4	0 ~ 65535	0	1ms	Immediate	Р		

After the 1st position is reached, the effective signal is output from 0 to 65535ms.

P18 Motor model

		Range	Default	Unit	Effective	Rele	node	
P18.00	Motor model code (32-bit)		1964114433		Restart	Р	S	Т
		EFFFFFFH						

The coding rules for motor models are as follows: XXXYZMNN

- (1) XXX: motor rated output (3 digits) Example 751 --- 750W
- (2) Y: Voltage specification
- 2: AC200V
- 6: AC380V
- (3) Z: Rotor inertia ring specifications
- 0: Low inertia (MA 40 ~ 130 flange)
- 1: Medium inertia (MM 40 ~ 130 flange)
- 2: High inertia (MH 40 ~ 130 flange)
- 4: Medium inertia (MG 40 ~ 130 flange)
- 5: Low inertia (MA 180 ~ 220 flange)
- 6: Low inertia (MN 14/25 flange)
- 7: Medium inertia (MM 180 ~ 220 flange)
- 8: High inertia (MG 180 ~ 220 flange)
- 9: High inertia (MH 180 ~ 220 flange)
- (4) M: Series number
- 0: X3 motor
- 1: X2 motor
- 2: X1 motor
- 3: X6 motor
- (5) N: Number of encoder bits
- 0: 17-bit
- 1: 23-bit
- (6) N: Design serial number

P20 Key and communication control interface

P20.00	Kev JOG trial	Range	Default	Unit	Effective	Relevant		node
P20.00	Key JOG trial	0 ~ 2000	0		Restart	Р	S	Т

0 ~ Rated speed of motor

D20.01	Foult roast	Range	Default	Unit	Effective	Rele	node	
P20.01	Fault reset	0 ~ 9	0		Restart	Р	S	Т

- 0: No reset
- 1: Reset

P20.03	Parameter identification	Range	Default	Unit	Effective	Rele	vant n	node
	function	0 ~ 5	0		Restart	Р	S	Т

- 0: No operation
- 1: Forward-rotation inertia identification
- 2: Reverse-rotation inertia identification
- 3: Reserved
- 4: Reserved
- 5: Encoder initial angle identification

P20.05	Analog input automatic	Range	Default	Unit	Effective	Relevan		node
	offset adjustment	0 ~ 2	0		Restart	Р	S	Т

0: No operation

1 ~ 2: Al1 ~ Al2 adjustment

P20.06	System initialization func-	Range	Default	Unit	Effective	Relevant r		node
	tion	0 ~ 99	0		Restart	Р	S	Т

- 0: No operation
- 1: Restore factory defaults (manufacturer parameters excluded) 2: Clear fault records
- 7: Absolute encoder reset

Other: Reserved

D20.00	Communication operation	Range	Default	Unit	Effective	Relevant		node
P20.08	instruction input	0 ~ 65535	0		Immediate	Р	S	Т

- 0: No operation or stop operation
- 1~3000: JOG speed, unit is rpm
- 1102H: Communication forward JOG
- 1103H: Communication reverse JOG
- 1300H: Forward-rotation inertia identification
- 1301H: Reverse-rotation inertia identification
- 1302H: Store inertia identification values
- 1500H: Encoder initial angle identification

P20.09	Communication operation	Range	Default	Unit	Effective	Relevant mo		node
	status output	0 ~ 65535	0		Display only	Р	S	Т

0 ~ 65535

For communication reading

- 0: Identification in progress
- 1: Identification fault
- 2: Identification completed
- 3: Identification value stored

	Communication selection	Range	Default	Unit	Effective	Rele	vant n	node
P20.11	of multi-segment instruc-		0		Immodiata	D	2	
	tion sequence numbers	0 ~ 32	0		Immediate	P)	

0 ~ 32

P20.12	Communication starting	Range	Default	Unit	Effective	Relevant		node
	homing	0 ~ 9	0		Immediate	Р		

0: No operation

1: Start homing

P21 Status parameters

P21.00	Servo status	Range	Default	Unit	Effective Rele		evant mode	
		0 ~ 65535	0		Display only	Р	S	Т

Real-time display of the status of the drive.

The following signs are available: rdy, run, Err.00 to 99 (fault), AL.00 to 99 (warning).

D21 01	Motor speed feedback	Range	Default	Unit Effective		Relevant mode		
P21.01	Motor speed reedback	-9000 ~ 9000	0	1rpm	Display only	Р	S	Т

Real-time display of motor speed. Unit is 1rpm.

D24 02	Co and instruction	Range	Default	Unit	Effective	ve Releva		node
P21.03	Speed instruction	-9000 ~ 9000	0	1rpm	Display only	Р	S	Т

Real-time display of current speed instructions. Unit is rpm.

	Internal torque instruction	Range	Default	Unit	Effective	Relevant		node
P21.04	(relative to rated torque)	-5000 ~ 5000	0	0.1%	Display only	Р	S	Т

Real-time display of the internal torque instruction. Unit is 0.1%, i.e. the percentage corresponding to the rated torque.

P21.05	Phase current effective	Range	Default	Unit	Effective	Relevant		node
	value	0 ~ 65535	0	0.01A	Display only	Р	S	Т

Real-time display of U-phase current RMS value. Unit is 0.01A.

	P21.06	DC husbar valtage	Range	Default	Unit	Unit Effective		Relevant mode		
ŀ	21.00	DC busbar voltage	0 ~ 65535	0	0.1V	Display only	Р	S	Т	

Real-time display of the busbar voltage value. Unit is 0.1V.

	Absolute position counter	Range	Default	Unit	Effective	Rele	vant n	node
P21.07	(32-bit)	-2147483646 ~ 2147483646	0	1Unit	Display only	Р	S	Т

Real-time display of the absolute position accumulated value. Unit is the instruction unit.

The range of the displayed value is: -2147483646 ~ 2147483646.

P21.09	Electrical angle	Range	Default	Unit	Effective	Relevant		node
		0 ~ 65535	0	0.1 degree	Display only	Р	S	Т

Real-time display of electrical angle values

The range of the displayed value is: 0.0 to 360.0 degrees.

P21.10	Mechanical angle (relative	Range	Default	Unit	Effective	Rele	vant m	node
	to encoder zero point)	0 ~ 65535	0	0.1 degree	Display only	Р	S	Т

Real-time display of the angle value of the motor's rotary axis

0.0 ~ 360.0 degree

P21.11	Load inertia identification	Range	Default	Unit	Effective	Rele	vant n	node
	value	0 ~ 65535	0	0.01 kg c m²	Display only	Р	S	Т

Real-time display of inertia value recognized online. The range is 0.01 kg c $m^2 \sim 655.35$ kg cm².

P21.12	Speed value relative to	Range	Default	Unit	Effective	Relevant n		node
	input instruction	-9000 ~ 9000	0	1rpm	Display only	Р	S	Т

Real-time display of the speed value corresponding to the input position instruction. Unit is rpm.

P21.13	Position deviation counter (32-bit)	Range	Default	Unit	Effective	Rele	node
		-2147483646 ~	0	1P	Display only	D	c
	(32-511)	2147483646	0	I IF	Display only	Г	3

Real-time display of the position deviation value. Unit is the minimum resolution of the encoder.

The range of the displayed value is: -2147483646 ~ 2147483646.

	Input pulse counter (32-	Range	Default	Unit	Effective	Relevant m		iode
P21.15	bit)	-2147483646 ~ 2147483646	0	1Unit	Display only	Р	S	Т

Real-time display of the total number of input instruction pulses. Unit is the instruction unit.

The range of the displayed value is: $-2147483646 \sim 2147483646$.

	Feedback pulse counter	Range	Default	Unit	Effective	Rele	node	
P21.17	(32-bit)	-2147483646 ~ 2147483646	0	1P	Display only	Р	S	Т

Real-time display of the accumulated value of the position feedback. Unit is the minimum resolution of the encoder.

The range of the displayed value is: $-2147483646 \sim 2147483646$.

	Position deviation counter	Range	Default	Unit	Effective	Rele	vant n	node
P21.19	instruction unit (32-bit)	-2147483646 ~	0	1Unit	Display only	D	Q	т
	mistraction unit (32-bit)	2147483646	U	TOTIL	Display Offiy	r	3	

Real-time display of position deviation. Unit is the instruction unit.

P21.21	Digital input signal moni-	Range	Default	Unit	Effective	Rele	vant n	node
	toring	0 ~ 511	0		Display only	Р	S	Т

Real-time display of the status of DI1 to DI9 on the panel.

If the third digit from the right of P07.21 is 0, when the DI interface is high level, the digital tube displays the upper half, and when it is low level, the lower half is displayed, and the sequence from right to left is DI1 to DI9.

If the third digit from the right of P07.21 is 1, when the DI interface is high level, it is represented by a binary 1, and when it is low level, it is represented by a binary 0. Binary bits BIT0 to BIT8 are used for DI1 to DI9, respectively.

D21 22	Digital output signal	Range	Default	Unit	Effective	Relevan		node
P21.23	monitoring	0 ~ 511	0		Display only	Р	S	Т

Real-time display of the status of DO1 to DO9 on the panel.

If the third digit from the right of P07.21 is 0, when the DO interface is high level, the digital tube displays the upper half, and when it is low level, the lower half is displayed, and the sequence from right to left is DO1 to DO9.

If the third digit from the right of P07.21 is 1, when the DI interface is high level, it is represented by a binary 1, and when it is low level, it is represented by a binary 0. Binary bits BIT0 to BIT8 are used for DO1 to DO9 respectively.

P21.24	Encodor atatua	Range	Default	Unit	Effective	Relevant r		node
PZ 1.Z4	Encoder status	0 ~ 65535	0		Display only	Р	S	Т

Reserved.

P21.25	Total power-on time (32-	Range	Default	Unit	Effective	Rele	vant n	node
	bit)	0 ~ 2147483646	0	0.1s	Display only	Р	S	Т

Real-time display of the drive's cumulative total power-up time value.

The range of displayed values is: 0.0:214748364.7s

D21 27	Al1 voltage after adjust-	Range	Default	Unit	Effective	Relevant		node
PZ 1.2	ment	-32768 ~ 32767	0	1mV	Display only	Р	S	Т

Real-time display of the voltage value of Al1, which has been adjusted.

P21.28	Al2 voltage after adjust-	Range	Default	Unit	Effective	Relevant		node
	ment	-32768 ~ 32767	0	1mV	Display only	Р	S	Т

Real-time display of the voltage value of Al2, which has been adjusted.

D24 20	Al1 voltage before adjust-	Range	Default	Unit	Effective	Relevant		node
P21.29	ment	-32768 ~ 32767	0	1mV	Display only	Р	S	Т

Real-time display of the original voltage value of AI1, which has not yet been adjusted.

P21.30	AI2 voltage before adjust-	Range	Default	Unit	Effective	Relevant r		node
	ment	-32768 ~ 32767	0	1mV	Display only	Р	S	Т

Real-time display of the original voltage value of AI2, which has not yet been adjusted.

D21 21	Ma dula tanan anatum	Range	Default	Unit	Effective	Relevan		node
P21.31	Module temperature	0 ~ 65535	0	1° C	Display only	Р	S	Т

Real-time display of module temperature value.

	Number of turns of abso-	Range	Default	Unit	Effective	Rele	vant n	node
P21.32	lute encoder (32-bit)	-2147483646 ~ 2147483646	0		Display only	Р	S	Т

Record the number of revolutions made in absolute position.

	Single turn position of	Range	Default	Unit	Effective	Rele	node	
P21.34	absolute encoder (32-bit)	-2147483646 ~ 2147483646	0	1P	Display only	Р	S	Т

Record the number of encoder pulses for less than one revolution in absolute position.

P21.36	\/	Range	Default	Unit	Effective	Rele	node	
PZ 1.36	Version code 1	0 ~ 65535	0	0.01	Display only	Р	S	Т

Display software version number.

P21.37	V	Range	Default	Unit	Effective Rel		levant mode	
PZ1.37	Version code 2	0 ~ 65535	0	0.01	Display only	Р	S	Т

Display software version number.

P21.38	Vi d- 2	Range	Default	Unit	Effective	Relevant n		node
PZ 1.38	Version code 3	0 ~ 65535	0	0.01	Display only	Р	S	Т

Display software version number.

P21.39	Dog dog to a side	Range	Default	Unit	Effective	Rele	vant n	node
P21.39	Product series code	0 ~ 65535	0		Display only	Р	S	Т

PP.XXX

D21 (0	Fault record display	Range	Default	Unit	Effective Relev		vant mode	
P21.40	Fault record display	0 ~ 9	0		Immediate	Р	S	Т

It can be set to 0 to 9 to view 10 times fault records. When there is a current fault, set it to 0 to display the current fault re-cord; when there is no current fault, display the last 10 times fault record.

- 0: Current fault type
- 1: Previous 1 time fault
- 2: Previous 2 times fault

.

9: Previous 9 times fault

D24 /4	Fault and a	Range	Default	Unit	Effective	Relevant r		node
P21.41	Fault code	0 ~ 65535	0		Display only	Р	S	Т

Fault codes, for the meaning of the corresponding values, please refer to the Error and alarm code list.

P21.42	Time stamp upon selected	Range	Default	Unit	Effective	Relevar		node
	fault (32-bit)	0 ~ 2147483646	0	0.1s	Display only	Р	S	Т

The total power-up time accumulated when a fault occurs.

P21.44	Current rotation speed of	Range	Default	Unit	Effective	Rele	Relevant mo	
	the selected fault	-9000 ~ 9000	0	1rpm	Display only	Р	S	Т

Motor speed when a fault occurs.

P21.45	U-phase current of the	Range	Default	Unit	Effective	Relevant		node
	selected fault	0 ~ 65535	0	0.01A	Display only	Р	S	Т

The effective value of the U-phase current when a fault occurs.

D24 / 7	Busbar voltage of the	Range	Default	Unit	Effective	Rele	vant n	node
P21.47	selected fault	0 ~ 65535	0	0.1V	Display only	Р	S	Т

The value of the busbar voltage when a fault occurs.

D24 / 0	Input terminal state of the	Range	Default	Unit	Effective	Rele	vant n	node
P21.48	selected fault	0 ~ 511	0		Display only	Р	S	Т

The status of DI1 to DI9 when a fault occurs. When the current DI interface is high level, the digital tube displays the upper half, and when it is low, the lower half is displayed.

P21.49	Output terminal state of	Range	Default	Unit	Effective	Rele	vant n	node
PZ 1.49	the selected fault	0 ~ 511	0		Display only	Р	S	Т

The status of DO1 to DO9 when a fault occurs. When the current DI interface is high level, the digital tube displays the upper half, and when it is low level, it displays the lower half.

D21 F0	Customized software	Range	Default	Unit	Effective	Rele	vant n	node
P21.50	version number	0 ~ 65535	0	0.01	Display only	Р	S	Т

Customized software version number

D21 F1	21 51 Load ratio	Range	Default	Unit	Effective	Rele	vant n	node
P21.51	Load ratio	0 ~ 500	0	1%	Display only	Р	S	Т

-

D24 F2	Danas and in the sale of the	Range	Default	Unit	Effective	Rele	vant n	node
P21.52	Regenerative load ratio	0 ~ 500	0	1%	Display only	Р	S	Т

-

D21 F2	Internal warning and	Range	Default	Unit	Effective	Rele	vant n	node
P21.53	Internal warning code	0 ~ 65535	0		Display only	Р	S	Т

Real-time display of internal warning codes.

D21 F/	Current segment number	Range	Default	Unit	Effective	Rele	vant n	node
P21.54	of internal instruction	0 ~ 99	0		Display only	Р	S	Т

Displays the serial number of the currently executing segment of the internal multi-segment position instruction.

D24 FF	Contant and a side as de	Range	Default	Unit	Effective	Rele	vant n	node
P21.55	Customized serial code	0 ~ 65535	0		Display only	Р	S	Т

Customized version series number

		Absolute position counter	Range	Default	Unit	Effective	Rele	vant n	node
F	21.56	high 32 bits (32-bit)	-2147483646 ~	0		Display only	Р	S	Т
		riigii 32 bits (32-bit)	2147483646	· ·		Biopidy offig			

When the fourth digit of P07.19 is 1, the absolute position is a 64-bit count, and it is shown here as the high 32 bits. Unit is the instruction unit.

	Feedback pulse counter	Range	Default	Unit	Effective	Rele	vant n	node
P21.58	high 32 bits (32-bit)	-2147483646 ~ 2147483646	0		Display only	Р	S	Т

When the fourth digit of P07.19 is 1, the feedback pulse is a 64-bit count, and it is shown here as the high 32 bits. Unit is the instruction unit.

Digital input (DI) function definition table

Setting value	Symbol	Name	Description
1	S_ON	Servo enable	Invalid- Disable servo motor enable
'	0_011	OCT VO CITABLE	Valid- Enable servo motor power-up
2	ER_RST	Alarm reset signal (along the effective level)	According to the type of alarm, the servo motor is able to continue to work after alarm reset. This function is along the effective level, when the set terminal is level effective, and also only effective when the edge changes are detected.
3	GAIN_SEL	Proportional action switch-ing/gain switching	Invalid - Speed control loop is controlled by PI Valid - Speed control loop is controlled by P
4	CMD_SEL	Main and auxiliary operation instruction switching	Invalid-Currently running instruction is A Valid-Currently running instruction is B
5	PER_CLR	Pulse deviation clear	Invalid-No action Valid-Clear pulse deviation
6	MI_SEL1	Switching 16 operation instructions	
7	MI_SEL2	Switching 16 operation instructions	Execute 16 position instructions or speed instructions by select-
8	MI_SEL3	Switching 16 operation instructions	ing them via DI terminal
9	MI_SEL4	Switching 16 operation instructions	
10	MODE_SEL	Mode switching selection	Switch between speed, position, and torque according to the selected control mode (3, 4, 5).
12	ZERO_SPD	Zero speed clamp function	Valid-Enable the zero fixing function Invalid - Disable the zero position fixing function
13	INHIBIT	Pulse inhibit	Valid-Disable instruction pulse input Invalid-Allow instruction pulse input
14	P_OT	Positive overtravel	When the mechanical movement exceeds the movable range limit switch action, enter the overtravel protection function. Valid-Positive overtravel, prohibit forward drive Invalid-Normal range, allow positive drive
15	N_OT	Negative overtravel	When the mechanical movement exceeds the movable range limit switch action, enter the overtravel protection function. Valid-Negative overtravel, prohibit positive drive Invalid-Normal range, allow positive drive
16	P_CL	Positive external torque limit	Valid - External torque limit is valid Invalid - External torque limit is not valid
17	N_CL	Negative external torque	Valid - External torque limit is valid Invalid - External torque limit is not valid
18	P_JOG	Positive JOG	Valid - Input according to the set instruction Invalid - Stop input of the running instruction
19	N_JOG	Negative JOG	Valid – Reverse input according to the set instruction Invalid – Stop input of the running instruction
20	GEAR_SEL1	Electronic gear selection	GEAR_SEL1 is invalid, GEAR_SEL2 is invalid-electronic gear 1 GEAR_SEL1 is valid, GEAR_SEL2 is invalid- electronic gear 2
21	GEAR_SEL2	Electronic gear selection	GEAR_SEL1 is invalid, GEAR_SEL2 is valid-electronic gear 3 GEAR_SEL1 is valid, GEAR_SEL2 is valid- electronic gear 4

Setting value	Symbol	Name	Description
22	POS_DIR	Reverse position instruction	Invalid - Not to reverse
			Valid - Reverse
23	SPD_DIR	Reverse speed instruction	Invalid - Not to reverse
			Valid - Reverse
24	TOQ_DIR	Reverse torque instruction	Invalid - Not to reverse
			Valid - Reverse
25	PSEC_EN	Internal multi-segment	Invalid-Ignore internal multi-segment instructions
		position enable signal	Valid-Enable internal multi-segment instructions
	INTP_ULK	Release the interrupt positioning lock	Invalid-No effect
26			Valid - When parameter P08.86 is set to 2 or 4, the position
			instruction interrupt execution lock status is released.
	INTP_OFF	Disable the execution of interrupt positioning.	Invalid - No effect
27			Valid-When parameter P08.86 is not set to 0, DI can be used to
			disable the execution of the interrupt positioning function at any
			time after the interrupt execution function is enabled.
28	HOME_IN	Origin position signal	Available as an origin or deceleration position signal
29	STHOME	Enable homing process	Start homing process
30	ESTOP	Emergency stop	Invalid - No effect
			Valid - Enter emergency stop
31	STEP	Position step enable	Valid-Execute the step amount instruction
31			Invalid-Instruction is zero as the positioning status
32	FORCE_ER	Forced fault protection input	Invalid - No effect
32			Valid - Enter fault status
	INTP_TRIG	Interrupt positioning execution trigger signal	Invalid - No effect
34			Valid - When the value of parameter P08.86 is not 0, the position
54			instruction is triggered to interrupt the execution process, which
			can only be configured to DI8 and DI9.
	INPOSHALT	Halt generation of internal position instructions	Invalid - No effect
35			Effective-Decelerate and halt execution of internal multi-stage
			positional and interrupt positioning
36	ANALOG	Disable analog input	Invalid - No effect
			Valid - Analog input is disabled
37	ENC_SEN	SEN enable absolute position data transmission	Invalid - No effect
			Valid - OAOBOZ sends absolute position data, servo cannot be
			enabled at this time.

Digital output (DO) function definition table

Setting value	Symbol	Name	Description
1	S_RDY	Servo ready	Valid-Servo ready
			Invalid - Servo not ready
2	S_ER	Fault output signal	Valid when a fault is detected
3	S_WARN	Warning output signal	Warning output signal active (on)
4	TGON	Motor rotation output signal	Servo motor rotation speed is above the speed threshold value.
			Valid-Motor rotation signal is valid
			Invalid - Motor rotation signal is invalid

Setting value	Symbol	Name	Description
		Zero speed signal	The signal output when the servo motor stops rotating.
5	V_ZERO		Valid-Motor speed is zero
			Invalid-Motor speed is not zero
6		Speed conformity	For speed control, the absolute value of the difference between
	V_CMP		the servomotor speed and the speed instruction is valid if it is
			less than the P04.44 speed deviation setting value.
7	COIN	Position completion	In position control, the position deviation pulse is valid when it
	COIN		reaches within the positioning completion amplitude P04.47.
		Position near signal	In position control, the position deviation pulse is valid when
8	NEAR		it reaches the setting value of the positioning approach signal
			amplitude P04.50.
		Torque limit signal	Signal to confirm torque limit
9	T_LT		Valid - Motor torque is limited
			Invalid - Motor torque is not limited
		Speed limit signal	Signal to confirm speed limit during torque control
10	V_LT		Valid - Motor speed is limited
			Invalid - Motor speed is not limited
		Brake release signal output	Brake release signal output:
11	BKOFF		Valid - Release the brake, the motor shaft is free
			Invalid - Resume the brake, the motor shaft is locked
12	T_ARR	Torque specified range arrival	The output signal is valid when the torque instruction value
			reaches the value set in P04.55, and the permissible variation
			range is determined by P04.56.
	V_ARR	Speed feedback specified range arrival	The output signal is valid when the speed feedback value reach-
13			es the value set in P04.45, and a variation range of +/-10rpm is
			allowed.
15	INTP_DONE	Interrupt positioning completion	Output after position instruction interrupt is completed.
	INTI_DONE		Output after position instruction interrupt is completed.
16	DB_OUT	Dynamic braking output	External relay or contactor and current limiting resistor are
	DD_001		required.
17	HOME	Homing completion	
18	INTP WORK	Interrupt positioning being executed	Interrupt positioning is being executed.
	IIVII_VVOICIC		interrupt positioning is being executed.
19	PCOM1	Position 1 comparison trigger	Trigger signal is output when the position 1 reaches the corre-
		signal	sponding range.
20	PCOM2	Position 2 comparison trigger	Trigger signal is output when position 2 reaches the correspond-
		signal	ing range.
21	PCOM3	Position 3 comparison trigger	Trigger signal is output when position 3 reaches the correspond-
		signal	ing range.
22	PCOM4	Position 4 comparison trigger	Trigger signal is output when position 4 reaches the correspond-
		signal	ing range.

6.3 Bus-related function code

CANopen servo function code and description.

Table 5-48

Parameter address	Name	Description	Default
2100_02h	Modes of operation	0: Position mode 1: Speed mode	7
(P00.01)	Modes of operation	2: Torque mode 7: CANopen mode	/
2100_09h~2100_0Dh		The servo internal electronic gear ratio setting can be switched by the 2nd bit from	
(P0.08~P0.12)	Electronic gear ratio	the right of the hexadecimal value that can be passed through P09.13 (2109-0Eh).	
(PU.U6~PU.12)		Refer to section 5.11 for details	
2103_0Ah	Forward rotation internal	It is the same as the 60E0h forward maximum torque limiting function, in parallel	5000
(P03.09)	torque limit	relationship. When using, take the smallest value of the two.	5000
2103_0Bh	Reverse rotation internal	It is the same as the 60E1h forward maximum torque limiting function, in parallel	F000
(P03.10)	torque limit	relationship. When using, take the smallest value of the two.	5000
2103_1Ch	Internal positive speed	It can be used as a maximum forward speed limit for the profile torque mode, or it	0000
(P03.27)	limit	can be replaced by the 6080h maximum motor speed.	3000
2103_1Dh	Internal negative speed	It can be used as a maximum reverse speed limit for the profile torque mode, or it	
(P03.28)	limit	can be replaced by the 6080h maximum motor speed.	3000
		Enable the 607Dh soft limit function. Hexadecimal number, from right to left	
		Digit 1~2: General function	
2107_09h	Soft limit function	Digit 3:	
(P07.08)	selection	0: Do not enable the soft limit	0
		1: Enable soft limit function when power on.	
		2: Only after the completion of homing, the soft limit function will be turned on.	
2109_01h	CANopen		
(P09.00)	site setting	Set CANopen servo station number, range 1~127	1
		Hexadecimal number, from right to left	
2109_0Dh	Select to enable AO2 or	Digit 1:	
(P09.12)	CAN communication	0: Enable CANopen communication	0
(, 0,,,,,,,	<i>9,</i> 1, 7, 99111111411119411911	1: Enable AO function	
		Hexadecimal number, from right to left	
		Digit 1: Baud rate selection	
		0: 20K bit/s	
		1: 50K bit/s	
		2: 100K bit/s	
		3: 125K bit/s	
		4: 250K bit/s	
		5: 500K bit/s	
2109_0Eh	Bus communication	6: 800K bit/s	
(P09.13)	configuration 1	7: 1M bit/s	0005
(1.07.10)	garagara :	Digit 2: Electronic gear ratio selection	
		0: Use servo internal electronic gear ratio	
		1: Enable 608Fh/6091h/6092h electronic gear ratio	
		Digit 3: Instruction unit selection	
		0: rpm	
		1: Instruction/sec.	
		Digit 4: Acceleration unit selection	
		0: Acceleration time ms from 0RPM-1000RPM	
		1: instruction/s^2.	
		T. HIGH GCHOTH'S Z.	

Parameter address	Name	Description	Default
		Digit 1: Bus fault detection	
		0: No detection 1: Detection	
2109_0Fh	Bus communication	Digit 2: Absolute system (P06.47=2) Origin completion flag storage setting	
(P09.14)	configuration 2	0: Not to store 1: Store	0
		Digit 3: Abnormal NMT command fault report selection	
		0: Allowed 1: Prohibited	
2109_10h	Bus communication	Synchronization jitter delay offset trimming	
(P09.15)	configuration 3	-20~20	0

Chapter 7 Error & Alarm and troubleshooting

7.1	Error & Alarm code list	220
7.2	Error & Alarm causes and handling measures	221

7.1 Error & Alarm code list

Table 7-1 lists all of the manufacturer-defined faults, and the cells marked by the dark background in the table are bus-specific faults. The 603Fh column in the table indicates the CiA protocol fault code corresponding to the factory-defined fault code, which can be read from dictionary object 603Fh when the fault occurs. If a fault occurs that is not in Table 7-1, refer to the standard user's manual for the corresponding servo drive.

Table 7-1 List of factory-defined error & alarm codes

Error & Alarm code	Name	Stop mode	Reset (Y/N)	Record memory (Y/N)	603Fh
Er.001	Abnormal system parameter	Stop immediately	N	N	6320h
Er.002	Product model selection fault	Stop immediately	N	N	6320h
Er.003	Parameter storage fault	Stop immediately	N	N	7600h
Er.004	FPGA fault	Stop immediately	N	N	6320h
Er.005	Product matching fault	Stop immediately	N	N	6320h
Er.006	Program error	Stop immediately	N	N	6320h
Er.007	Encoder initialization failure	Stop immediately	N	Y	7305h
Er.008	Short circuit to ground detection fault	Stop immediately	N	Y	2330h
Er.009	Over-current fault A	Stop immediately	N	Y	2310h
Er.010	Over-current fault B	Stop immediately	Y	Y	2310h
	Incremental optical encoder Z discon-				
Er.012	nection or abnormal number of absolute	Stop immediately	Y	Υ	7305h
	encoder turns				
Er.013	Abnormal encoder communication	Configurable	Υ	Y	7305h
Er.014	Abnormal encoder data	Configurable	Υ	Y	7305h
Er.015	Abnormal under-voltage of encoder battery	Stop immediately	N	Y	7305h
Er.016	Overlarge speed deviation	Configurable	Υ	Y	8400h
Er.017	Torque saturation timeout	Configurable	Υ	Y	8300h
Er.018	Control power under-voltage	Configurable	Y	Y	3220h
Er.019	Tripping	Configurable	Υ	Y	8400h
Er.020	Over-voltage	Stop immediately	Y	Y	3210h
Er.021	Under-voltage	Decelerate to stop	Y	Default N, optional	3220h
Er.022	Current sampling fault	Stop immediately	Y	Y	7200h
Er.023	Overlarge AI sampling voltage	Stop immediately	Y	Y	7200h
Er.024	Over-speed	Stop immediately	Y	Y	8400h
Er.025	Electric angle identification failure	Stop immediately	Y	N	FF00h
Er.026	Inertia identification failure	Stop immediately	Y	N	FF00h
Er.027	DI terminal parameter setting fault	Stop immediately	Υ	N	6320h
Er.028	DO terminal parameter setting fault	Stop immediately	Y	N	6320h
Er.040	Invalid servo ON instruction fault	Configurable	Y	N	FF00h
Er.042	Over-speed pulse division output	Configurable	Y	Y	FF00h
Er.043	Overlarge position deviation	Configurable	Υ	Y	8611h
Er.044	Main circuit input phase loss	Configurable	Υ	Y	3130h
Er.045	Drive output phase loss	Configurable	Y	Y	3130h
Er.046	Overloaded drive	Stop immediately	Y	Y	3230h
Er.047	Overloaded motor	Stop immediately	Y	Y	3230h
Er.048	Electronic gear setting error	Configurable	Y	N	6320h
Er.049	Overheated heat spreader	Configurable	Y	Y	4210h
Er.050	Abnormal pulse input	Configurable	Υ	Υ	8500h

Error & Alarm code	Name	Stop mode	Reset (Y/N)	Record memory (Y/N)	603Fh
Er.051	Overlarge full-loop position deviation	Configurable	Υ	Y	8611h
Er.054	User forced fault	Decelerate to stop	Y	Y	FF00h
Er.055	Absolute position resetting fault	Configurable	Y	Y	FF00h
Er.056	Main circuit power outage	Decelerate to stop	Υ	Default N, optional	5100h
Er.058	Safe Torque Off (STO)	Stop immediately	Υ	Default N, optional	5100h
Er.060	The first start after writing customized software	Stop immediately	N	N	6320h
Err.065	CAN BUS OFF	Configurable	Y	Y	7500h
Err.066	Abnormal NMT command	Configurable	Y	Y	7500h
Err.067	CAN BUS fault	Decelerate to stop	Υ	Y	7500h
Err.071	Node protection or heartbeat timeout	Configurable	Υ	Y	7500h
Err.072	Synchronization invalidation	Configurable	Υ	Y	7500h
Err.073	CANOpen trace buffer underflow	Configurable	Υ	Y	7500h
Err.074	CANOpen trace buffer overflow	Configurable	Υ	Y	7500h
AL.080	Under-voltage alarm	No stop	Y	N	3220h
AL.081	Overloaded drive alarm	No stop	Υ	Y	3230h
AL.082	Overloaded motor alarm	No stop	Υ	Y	3230h
AL.083	Modification of parameters that need power restart	No stop	Y	N	6320h
AL.084	Servo not ready	No stop	Υ	N	FF00h
AL.085	E2PROM writing frequency alarm	No stop	Υ	N	7600h
AL.086	Positive over-travel alarm	No stop	Y	N	FF00h
AL.087	Negative over-travel alarm	No stop	Y	N	FF00h
AL.088	Position instruction over-speed	No stop	Υ	N	8500h
AL.090	Absolute encoder angle initialization alarm	No stop	Y	Y	FF00h
AL.093	Overloaded energy consumption brake	No stop	Υ	Y	3210h
AL.094	Over-small external regenerative resistor	No stop	Υ	N	3210h
AL.095	Emergency stop	Decelerate to stop	Υ	N	FF00h
AL.096	Homing error	Decelerate to stop	Y	N	FF00h
AL.097	Encoder battery under-voltage	No stop	Υ	N	7305h

7.2 Error & Alarm causes and handling measures

Table 7-2 lists all of the manufacturer-defined errors & alarms, causes and handling measures. The cells marked by the dark background in the table are bus-specific faults.

Table 7-2 List of manufacturer-defined errors & alarms, causes and handling measures

Error & Alarm code and name	Cause	Handling measure
F001.	1. Instantaneous decrease in power voltage;	1. Ensure the power voltage is within the specified
Err.001:	2. The range of some parameters has been changed	range. Restore the parameters (P20.06 set to 1);
Abnormal system parame-	after software updates, which makes the stored param-	2. Please restore the parameters first if the software has
ter	eters exceed set ranges.	been upgraded.
Err.002:	1. The connecting cable of the encoder is damaged or	1. Check if the encoder cable is normal and fasten the
Product model selection	loose;	cable;
fault	2. Invalid drive or motor model.	2. Replace the faulty motor or drive with a valid one.

Error & Alarm		
code and name	Cause	Handling measure
Err.003: Parameter storage fault	 Over-frequent parameter reading/writing; The equipment for parameter storage is faulty; Power supply is unstable; Faulty drive. 	1. Check if the modification or writing EEPROM of the host device communication is too frequent. Check if there is an instruction for frequent parameter modification and EEPROM writing in the communication program. 2. Check the control circuit power cable and ensure the control circuit power voltage is within the specified range.
Err.004: FPGA fault	Abnormal software version	Check if software version is matching.
Err.005: Product matching fault	 The connecting cable of the encoder is damaged or loose; Use a three-party external port such as an encoder, which is not matched with the equipment; The power of the motor and drive are mis-matched with each other; Product model number doesn't exist. 	1. Check the connection of the encoder cable; 2. Replace the mismatching product with a matching one; 3. Choose a matching encoder type or replace other types of drives. For example, the error alarm will be reported when choosing a motor, whose power is higher or two-level lower than that of a drive.
Err.006:	1. Abnormal system parameter;	EEPROM fault, set P20.06 to1 to initialize system param-
Program error	2. Internal fault of drive.	eters and reconnect to the power supply.
Err.007: Encoder initializa¬tion failure	Abnormal encoder signal detected during pow¬er-on.	Check the encoder wiring, or replace the encoder cable.
Err.008: Short circuit to ground detection fault	 UVW wiring fault; Motor damages; Faulty drive. 	 Check if UVW is short-circuited to ground. If so, then replace the cable; Check if the motor cable or grounding resistor is abnormal. If so, then replace the motor.
Err.009: Over-current fault A	1. The instruction input is synchronized with servo connection or is too fast. 2. The external braking resistor is too small or short-circuited; 3. Bad contact of motor cable; 4. Motor cable is grounded; 5. Motor UVW is short-circuited; 6. Motor is burnt; 7. Software detects the over-current in power transistors.	1. Check instruction input time sequence and input instruction after the servo connects with "rdy"; 2. Check if the braking resistor meets specifications. If not, then replace it with a matching resistor according to the manual; 3. Check if the encoder cable is normal and fasten the connector; 4. Check the insulation resistance between the motor UVW wire and the motor ground wire. When insulation is faulty, replace the motor timely; 5. Check if the cable is well connected with UVW. If it is short-circuit¬ed, then reconnect the motor cable correctly; 6. Check whether the resistor values between the cables are the same. If not, then replace the motor; 7. Reduce loads, increase the capacity of the drive and motor, and extend the acceleration and deceleration times.

Error & Alarm code and name	Cause	Handling measure
Er.010: Over-current fault B	1. The instruction input is synchronized with servo connection or is too fast. 2. The external braking resistor is too small or short-circuited; 3. Bad contact of motor cable; 4. Motor cable is grounded; 5. Motor UVW is short-circuited; 6. Motor is burnt; 7. Software detects the over-current in power transistors.	1. Check instruction input time sequence and input instruction after the servo connects with "rdy"; 2. Check if the braking resistor meets specifications. If not, then replace it with a matching resistor according to the manual; 3. Check if the encoder cable is normal and fasten the connector; 4. Check the insulation resistance between the motor UVW wire and the motor ground wire. When insulation is faulty, replace the motor timely; 5. Check if the cable is well connected with UVW. If it is short-circuit—ed, then reconnect the motor cable correctly; 6. Check whether the resistor values between the cables are the same. If not, then replace the motor; 7. Reduce loads, increase the capacity of the drive and motor, and extend the acceleration and deceleration times.
Err.012: Incremental optical encoder Z disconnection or abnormal number of absolute encoder turns	Incremental encoder: 1. Abnormal Z signal receiving; bad wiring of the Z signal cable; or Z signal's loss of absolute encoder resulted from encoder fault; Absolute encoder: 2. Inadequate absolute encoder battery power supply. 3. Parameter P06.47 is set to 1 (set as an absolute system). Encoder initialization is not performed. 4. The encoder motor terminal is unplugged or plugged in during power off.	1. Manually rotate the motor shaft first, if there is still a fault report, then check the encoder wiring, rewire or replace the cable, or replace the encoder, and re-power the equipment; 2. Determine whether the battery is normal first, if the battery voltage is not adequate, please replace the battery; 3. Set P20.06 to 7 to initialize the number of turns, and reconnect to the power supply.; 4. Set P20.06 to 7 to initialize the number of turns, and reconnect to the power supply.
Err.013: Abnormal encoder communication	 The communication encoder cable is discon¬nected; The encoder is not grounded; Communication verification is abnormal. 	Check the encoder connection or replace the encoder cable; Check if the encoder is well grounded.
Err.014: Abnormal encoder data	Disconnection or bad contact of the serial encoder; The reading/writing of the serial encoder data is abnormal.	Check or replace the encoder cable.
Err.015: Abnormal un¬der-voltage of encoder battery	The encoder battery voltage is lower than the threshold value specified by P06.48; the tens place of P06.47 is 1.	Replace the encoder battery.
Err.016: Overlarge speed deviation	The absolute value between the speed instruction and measured speed surpasses the set threshold of P06.45.	 Increase the setting value of P06.45; Extend acceleration/deceleration time of internal position instruc¬tion or adjust the response of the gain system; Set P06.45 to 0 to disable the overlarge speed deviation function.
Err.017: Torque saturation timeout	Torque maintains a long-term saturated state, which lasts longer than the threshold time speci¬fied by P06.46.	Increase the time span specified by P06.46; Check if UVW is disconnected.

Error & Alarm code and name	Cause	Handling measure
Err.018: Control power under-volt- age	Control power input cable is not connected well or the input power supply is abnormal.	Check input power supply and cables; Replace the drive with a new one.
Err.019: Tripping	Circuit divergence results from incorrect wiring, which leads to motor tripping and loss of speed.	 Check UVW and encoder wiring. Check the motor and drive. Replace it when necessary and contact HCFA detection.
Err.020: Over-voltage	1. The voltage of the power supply exceeds AC 280V, which surpasses the limited range; 2. Breakage or incompatibility of braking resistor, which leads to failure of absorbing regenerative energy. 3. The load inertia exceeds the allowable range; 4. Faulty drive.	1. Input a correct power voltage range; 2. Check if the drive has already connected with an external resistor; check if the external resistor value has been disconnected to ensure correct wiring. If the resistor has been burnt, it is recommended to replace it with a larger external resistor (please contact HCFA to access relevant suggestions). 3. Extend acceleration/deceleration time or replace a matching drive/ motor according to load inertia.
Err.021: Under-voltage	 Power voltage decrease; Instantaneous power outage; Under-voltage protection threshold (P06.36) is too high; Faulty drive (Note: This fault does not store the record by de¬fault, it can be set whether to store or not through P07.19.) 	1. Increase the capacity of power voltage. Make sure input power is stable; 2. Check whether the under-voltage protection threshold (P06.36) is set too high.
Err.022: Current sampling fault	Current sampling fault of the drive	Replace servo drive
Err.023: Overlarge Al sampling voltage	Al wiring error External input voltage is too high.	Check whether the AI input is well connected and set the input voltage within the range of ±10V.
Err.024: Over-speed	 Speed instruction exceeds the specified maxi¬mum rotation speed UVW phase sequence error Serious overshoot of speed response Faulty drive 	 Lower the speed instruction; Check whether the UVW phase sequence is correct; Adjust the gain of the speed loop to reduce overshoot; Replace the drive.
Err.025: Electric angle identification failure	Over large load or inertia; Incorrect encoder cable wiring	Reduce load or increase current loop gains Replace the encoder cable.
Err.026: Inertia identification failure	Load or inertia is too large, making the motor fail to operate normally according to the specified curve. Other faults occur, which results in the end of	Reduce load or increase current loop gains; Ensure a correct identification process.
Err.027: DI terminal parame¬ter setting fault	Different physical DI terminals are assigned to the same DI function. Both physical DI terminals and communication control DI functions are assigned at the same time.	1. In P04.01~P04.09, there are cases where the same function is assigned to more than one physical DI terminal; 2. The function assigned in P04.01 to P04.09 is activated at the same time as the corresponding binary bit in P09.05 to P09.08. Please refer to the ways of using P09.05 to P09.08. Reassign the DI function for detailed information.

Error & Alarm code and name	Cause	Handling measure
Err.028: DO terminal parameter setting fault	Different DO terminals are assigned to the same function.	In cases where the same function is assigned to more than one DO terminal in P04.21 to P04.29, please reassign the DO function.
Err.040: Invalid servo ON instruction fault	After executing the auxiliary function to energize the motor, the servo-ON instruction is still input from the host device.	Change inappropriate operating practices.
Err.042: Over-speed pulse division output	Pulse division output surpasses the upper limit of the hardware.	Change the division output setting function code so that the division output pulse frequency will not exceed the limit in the speed range during operation.
Err.043: Overlarge position deviation	1. Servo motor UVW wiring is incorrect; 2. Servo drive gain is low; 3. Position instruction pulse frequency is high; 4 Position instruction acceleration is too large; 5. Position deviation is too large and P00.19 is set too low; 6. Faulty servo drive/motor;	1. Reconnect the cables after checking the connection of the BUS circuit cable 2. Increase servo gains if the gain of the servo drive is too low; 3. Re-operate the device after reducing instruction frequency or acceleration, or adjusting gear ratio; 4. Re-operate the device after reducing instruction acceleration and add smoothing parameters such as position instruction acceleration or deceleration time parameter; 5. Check if the value of P00.19 is appropriate. If not, then set an appropriate one (P00.19). 6. Check the running waveform in the background, if there is no feedback from the input, please replace the servo drive.
Err.044: Main circuit input phase loss	1. Bad contact of the three-phase input cable; 2. Phase loss fault, i.e., when the main power sup-ply is ON, the voltage of one of the R\S\T phases is too low for more than 1 second.	1. Check whether the three-phase power supply cable is well con-nected (Note: Do not operate with the power supply on.); 2. Measure the voltage of each phase of the three-phase power supply to ensure that the input power supply is balanced or that the input power supply voltage conforms to the specifications;
Err.045:	1. Bad connection of UVW	1. Check UVW wiring
Err.046: Overloaded drive	2. Disconnection resulted from a faulty drive The loaded operation exceeds the drive inverse time curve. The causes are as follows: 1. The motor UVW cable or encoder cable is loose or faulty; 2. The motor is blocked or acted upon by force, including mechanical jamming, collision, gravity force, and other acts of force. Or the mechanical brake is not released during operation. 3. Misconnect the UVW and encoder wires of the same motor to different drives when wiring multi¬ple drives. 4. Overload or the drive or motor size is too small. 5. Possible lack of phase or wrong phase sequence. 6. Damaged drive or motor	2. Replace servo motor 1. Confirm that the motor UVW wire and encoder wiring are correct; 2. Confirm that the motor is not blocked or driven by force, and confirm that the mechanical brake (holding brake) is on; 3. Confirm that there is no cross-wiring of multiple drives and motors, i.e., the UVW cable and the encoder cable of a motor are connected to their corresponding drive; 4. Extend the acceleration and deceleration time, and re-select the appropriate drive or motor; 5. Check whether the motor output UVW is connected incorrectly and whether it is shorted to ground; 6. Replace the drive or motor;

Error & Alarm code and name	Cause	Handling measure
Err.047: Overloaded motor	The loaded operation exceeds the drive inverse time curve. The causes are as follows: 1. The motor UVW cable or encoder cable is loose or faulty; 2. The motor is blocked or acted upon by force, including mechanical jamming, collision, gravity force, and other acts of force. Or the mechanical brake is not released during operation. 3. Misconnect the UVW and encoder wires of the same motor to different drives when wiring multi¬ple drives. 4. Overload or the drive or motor size is too small. 5. Possible lack of phase or wrong phase sequence.	1. Confirm that the motor UVW wire and encoder wiring are correct; 2. Confirm that the motor is not blocked or driven by force, and confirm that the mechanical brake (holding brake) is on; 3. Confirm that there is no cross-wiring of multiple drives and motors, i.e., the UVW cable and the encoder cable of a motor are connected to their corresponding drive; 4. Extend the acceleration and deceleration time, and re-select the appropriate drive or motor; 5. Check whether the motor output UVW is connected incorrectly and whether it is shorted to ground;
Err.048: Electronic gear setting	6. Damaged drive or motor The gear ratio exceeds the specified range [encoder resolution/10000000, encoder resolution/2.5].	6. Replace the drive or motor Set the correct gear ratio.
Err.049: Overheated heat spreader	1. Faulty fan; 2. Ambient temperature is too high; 3. Repetitive reset overload fault through pow¬er-off 4. Install the drive in the wrong direction and leave inappropriate clearance between drives; 5. The servo drive is faulty; 6. The motor or drive is faulty.	1. Check if the fan operates normally, and replace the fan or drive if it is abnormal; 2. Measure the ambient temperature and improve the cooling conditions of the servo drive to reduce the ambient temperature; 3. Check if an overload fault has been reported before. The way to correct the fault is to wait for 30 seconds after overload and then reset the equipment. If the power of the drive or motor is too small, increase the capacity, extend the acceleration and deceleration time, and reduce the load. 4. Confirm the setting state of the drive and install it according to the installation standards; 5. If a fault is still reported after a 5-minute power off and then restart, replace the drive.
Err.050: Abnormal pulse input	Input pulse frequency is larger than the specified maximum pulse frequency Input pulse is interfered.	 Adjust the maximum pulse frequency parameter P06.38; Use the background software to check whether the instruction is abnormal; ensure a reliable grounding; use a twisted pair of shielded wires, and separate the input cable from the power cable.
Err.051: Overlarge full-loop position deviation	Abnormal external encoder; Relative setting is too conservative.	 Confirm that the external encoder is correctly wired. If it is not, then replace it with a new one. Full-loop deviation is too large; the protection function setting is incorrect. Confirm and correct the setting of relevant parameters.
Err.054: User forced fault	Enter faulty state forcibly through DI function 32 (FORCE_ERR).	Normal DI function inputs, which are configured with DI function 32 and valid inputs. Disconnecting the inputs can release the alarm.
Err.055: Absolute position resetting fault	Faulty position reset of absolute encoder	Contact HCFA for technical supports.

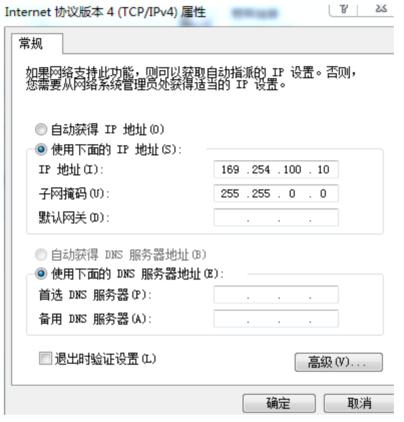
Г Q. A.I		
Error & Alarm code and name	Cause	Handling measure
code and name	Power outage or abnormal main power line. (Note: This	
Err.056:	fault does not store the record by default, it can be set	Check if there is an instantaneous power decrease.
Main circuit power outage	whether to store or not through P07.19)	Increase power voltage capacity.
Err.058:	1.The STO safety function is enabled;	1.STO terminal recovery, automatically clears the fault;
Safe torque off (STO)	Abnormal STO circuit power supply or wiring	check whether the STO power supply wiring is normal.
		If the faults are still reported, replace the machine
Err.060:	First startup after downloading a customized version	Restore factory values for loading customized parame-
The first start after writing	of the program in a drive that already has a standard	ters.
customized software	program.	
Err.065:	CAN bus disconnection or abnormal reception or	Check wiring and reconnect.
CAN BUS OFF	transmission	NAT I DO NOT INCOME.
Err.066:	Receive NMT stop or reset command at servo-ON state.	NMT node reset. Do not stop or reset the CAN node at
Abnormal NMT command	CANIDITO dispose a stign on a la constant a società de la constant	the servo-ON state.
Err.067: CAN BUS fault	CAN BUS disconnection or abnormal receiving/ sending	Check the wiring and reconnect it.
Err.071:	process.	
Node protection or heart-	No response is received when node protection and	Check if the nodes are online, and reset the NMT node.
beat timeout	heartbeat monitoring reach the specified time.	check if the riodes are offline, and reset the Wift riode.
Err.072:		
Synchronization invalida-	Synchronization with the host device is invalid under the	NMT node reset; 6040 sends fault reset command.
tion	CANOpen IP mode	, , , , , , , , , , , , , , , , , , , ,
Err.073:		Check if there is any interference to the communication
CANOpen trace buffer	Lose synchronous clock more than 2 times under the	and normal operation of the host device; reset NMT
underflow	CANOpen IP or CSP mode.	node or 6040 sends fault reset command.
Err.074:	Synchronous clock runs too fast or the actual clock	Check any interference to the communication circuit and
CANOpen trace buffer	frequency do not match the setting value under the	normal operation of the host device; check the matching
overflow	CANOpen IP or CSP mode.	between clock frequency and the setting value. NMT
	or a repair at the control of	node reset or 6040 sends fault reset command.
AL.080:	Busbar voltage is low.	1. Check the main circuit power supply.
Under-voltage alarm		2. Lower under-voltage detection parameter P06.36.
	The loaded operation exceeds the drive inverse time	Confirm that the motor UVW wire and encoder wiring
	curve.	are correct;
	The causes are as follows:	2. Confirm that the motor is not blocked or driven by
	1. The motor UVW cable or encoder cable is loose or	force, and confirm that the mechanical brake (holding brake) is on;
	faulty;	3. Confirm that there is no cross-wiring of multiple
AL.081:	2. The motor is blocked or acted upon by force, including mechanical jamming, collision, gravity force, or other	drives and motors, i.e., the UVW cable and the encoder
Overloaded drive alarm	acts of force, or the mechanical brake is not released	cable of a motor are connected to their corresponding
Overloaded drive alarm	during operation.	drive;
	3. Misconnect the UVW and encoder wires of the same	Extend the acceleration and deceleration time, and
	motor to different drives when wiring multi¬ple drives.	re-select the appropriate drive or motor;
	4. Overload or the drive or motor size is too small.	5. Check whether the motor output UVW is connected
	5. Possible lack of phase or wrong phase sequence.	incorrectly and whether it is shorted to ground;
	6. Damaged drive or motor	6. Replace the drive or motor.

Error & Alarm code and name	Cause	Handling measure
AL.082: Overloaded motor alarm	The loaded operation exceeds the drive inverse time curve. The causes are as follows: 1. The motor UVW cable or encoder cable is loose or faulty; 2. The motor is blocked or acted upon by force, including mechanical jamming, collision, gravity force, or other acts of force, or the mechanical brake is not released during operation. 3. Misconnect the UVW and encoder wires of the same motor to different drives when wiring multi¬ple drives. 4. Overload or the drive or motor size is too small. 5. Possible lack of phase or wrong phase sequence. 6. Damaged drive or motor	1. Confirm that the motor UVW wire and encoder wiring are correct; 2. Confirm that the motor is not blocked or driven by force, and confirm that the mechanical brake (holding brake) is on; 3. Confirm that there is no cross-wiring of multiple drives and motors, i.e., the UVW cable and the encoder cable of a motor are connected to their corresponding drive; 4. Extend the acceleration and deceleration time, and re-select the appropriate drive or motor; 5. Check whether the motor output UVW is connected incorrectly and whether it is shorted to ground;
AL.083: Modification of parameters that need power restart	Modify parameters that need restarting for going into	6. Replace the drive or motor. Reconnect to the power supply.
AL.084: Servo not ready	Conduct servo-ON when the servo is not ready.	Enable the drive after detecting signals of servo READY.
AL.085:	Operating E2PROM too frequently.	Reduce EEPROM writing frequency. Use the communication writing instruction that does not save EEPROM.
AL.086: Positive over-travel alarm	1. Pot and Not are valid simultaneously, but gen¬erally, they do not appear at the same time on the workbench. 2. Servo axes are in the over-travel state in a cer¬tain direction, which can be released automatically.	Positive limit switch is triggered, check the operation mode, give negative instruction or manually rotate the motor away from the positive limit, it will automatically clear the alarm (Safety precaution, manual rotation of the motor is prohibited during overtravel).
AL.087: Negative over-trav-el alarm	1. Pot and Not are valid simultaneously, but gen¬erally, they do not appear at the same time on the workbench. 2. Servo axes are in the over-travel state in a cer¬tain direction, which can be released automatically.	Negative limit switch triggered, check operation mode, give positive instruction or manually rotate the motor away from the positive limit, it will automatically clear the alarm.
AL.088: Position instruction over- speed	Gear ratio is too large; Pulse frequency is too high.	Reduce gear ratio; Reduce pulse frequency.
AL.090: Absolute encoder angle initialization alarm	Over large deviation (more than 7.2 degrees kWh) during re-initialization of encoder angle alarm	Replace motor.
AL.093: Overloaded energy consumption brake	Energy consumption braking power is overloaded: 1. Incorrect wiring or bad contact of the braking resistor; 2. Short connecting cable may be disconnected when using an internal resistor; 3. Insufficient braking resistor capacity; 4. Prolonged braking due to overlarge braking resistor value; 5. Input voltage exceeds the specifications; 6. Incorrect setting of constants including braking resistor value, capacity, or heat generation time constant; 7. Faulty drive.	1. Check if the resistor wiring is correct; 2. Check if the internal resistor wiring is correct; 3. Increase braking resistor capacity; 4. Reduce braking resistor value; 5. Reduce input voltage; 6. Set correct parameters according to specifications; 7. Replace drive.

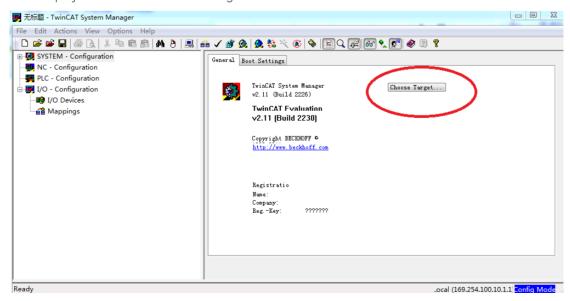
Error & Alarm code and name	Cause	Handling measure
AL.094:	1. External regenerative resistor value is smaller than the	1. Configure the power of the external regenerative
Over-small exter-nal	minimum value specified by the drive.	resistor accord-ing to the specifications;
regenerative resistor	2. Incorrect parameter setting.	2. Check that parameters P00.21 to P00.24 are correct.
AL.095: Emergency stop	The emergency stop is triggered.	Normal DI function inputs, configured with DI function 30 and valid inputs. Disconnecting the inputs can release the alarm.
AL.096: Homing error	1. Homing time exceeds the value specified by P08.95 2. P08.90 is set to 3, 4, or 5 and encounters the limit; 3. Encounter limit twice when not using limit as the origin.	Increase the specified value of P08.95; Reduce homing searching speeds P08.92, and P08.93 to avoid the alarm caused by over-speed of homing.
AL.097: Encoder battery under-voltage	Encoder battery voltage is below the threshold value specified by P06.48.	Check or replace encoder battery.

Chapter 8 Examples of application

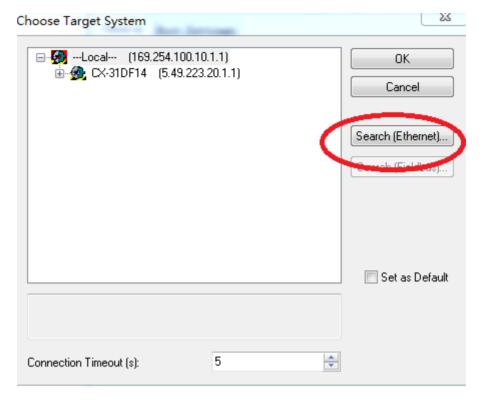
8.1	Connection between X5EN and Beckoff CANopen	231
8.2	Connection between X5EN and Schneider controller CANopen	243
8.3	Connection between X5EN and Inovance controller CANopen	254

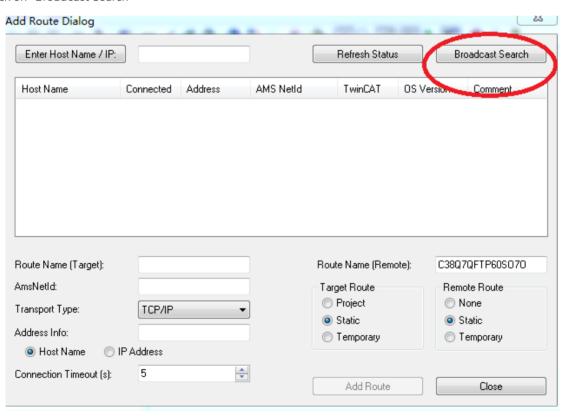

8.1 Connection between X5EN and Beckoff CANopen

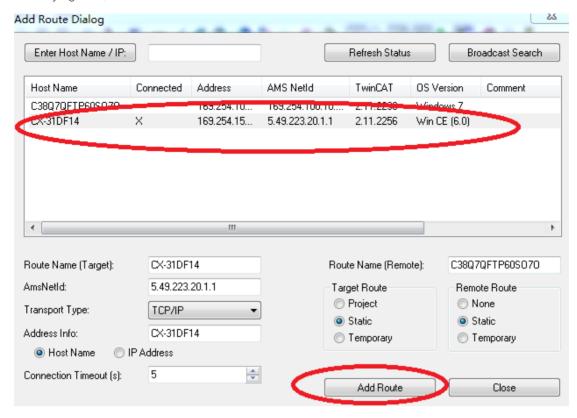
This case is an example of connecting a Beckoff PLC system (CX5020 mainframe + EL6751 CAN module, Twin cat2.11) to an X5EN servo drive with CANopen function, and following the steps below to proceed in the profile position mode:


Step 1: PLC connection and project building

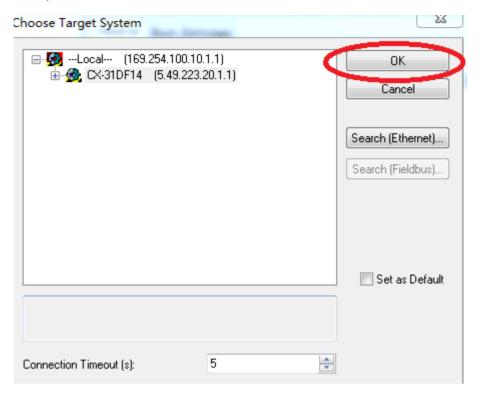
1. Set the computer IP address to the same network segment as the PLC:

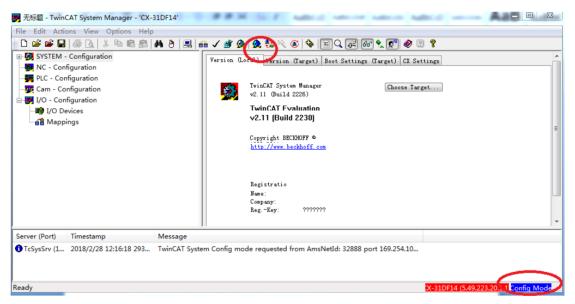

Computer \rightarrow Local connection \rightarrow Property \rightarrow Internet protocol version 4 (TCP/Ipv4) property \rightarrow Use the following IP address as shown below (default is 169.254.X.X):


- 2. Open TwinCAT SystemManager (right-click on system tray icon), New (file->New), Choose target and search for CX. Search (Ethernet) ->Broadcast search, as shown:
 - 2.1 Build a new project and click on "Choose Target"


2.2 Click on "Search (Ethernet)"

2.3 Click on "Broadcast Search"


2.4 Find PLC master (if "X" has shown in the column named "Connected", the master has been found, therefore step 2.5 does not need carrying out), and click on "ADD Route":

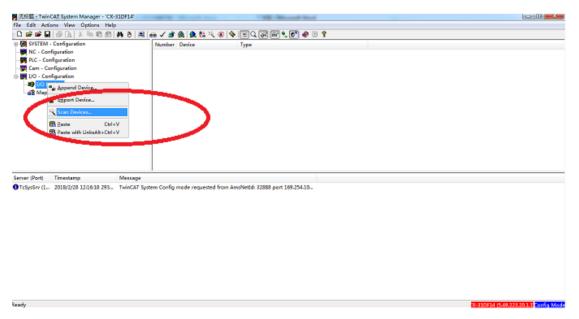

2.5 Add a password, and click on "OK" if not necessary.

2.6 Choose PLC master, and click on "OK".

3. Switch to "Config Mode" after a successful connection

Step 2: Servo parameter setting

Set the parameters as shown in Table 7-1 by utilizing Servo Studio, the host device software for the HCFA servo drive:


Table 7-1 Parameter configuration of HCFA servo drive when used with CX5020

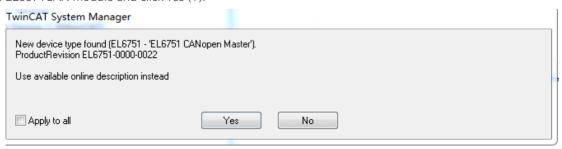
Parameter address	Setting value	Description
P00.01	7	CANopen mode
P09.00	1	Slave address (default 1)
P09.13	5	Baud rate (default 500K)
P10.01	0.55	RPDO1 configuration parameter, asynchronous transmission,
P10.01	255	change to 0x80FF if it is to be disabled
D10.02	255	RPDO2 configuration parameter, change to 0x80FF if it is to
P10.03	255	be disabled
P10.08	3	Number of RPDO1 valid mapping parameters
P10.09	60600008h (1616904200)	Modes of operation
P10.11	60400010h (1614807056)	Controlword
P10.13	607A0020h (1618608160)	Profile position setting
P10.25	1	Number of RPDO2 valid mapping parameters
P10.26	60810020h (1619066912)	Profile position setting
D11 01	11.31 255	TPDO1 configuration parameter, asynchronous transmission,
P11.31		change to 0x80FF if it is to be disabled
P11.32	10	TPDO1 ban time 1ms
P11.33	1	TPDO1 event time 1ms
P12.00	1	Number of TPDO1 valid mapping parameters
P12.01	60410010h (1614872592)	Statusword

(Note that the maximum number of bytes set per PDO group is 8 bytes)

Step 3: PLC configuration X5 servo drive (A 120 Ω resistor should be connected in parallel between the PLC and the servo drive)

1. In Beckhoff PLC config mode, right-click on I/O devices \rightarrow CAN devices, scan devices and the PLC automatically searches for connected modules:

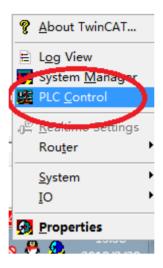
2. Click on "Confirm".


3. Click on "OK".

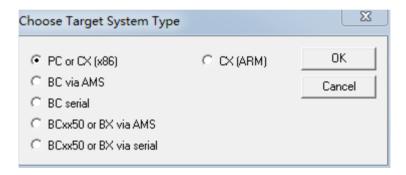
4. Search for modules, and click Yes (Y).

5. Find EL6571CAN module and click Yes (Y).

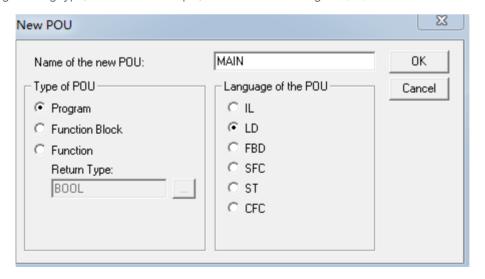
6. Complete search, and click No (N).

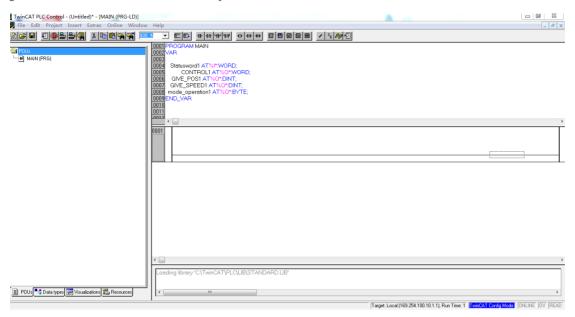


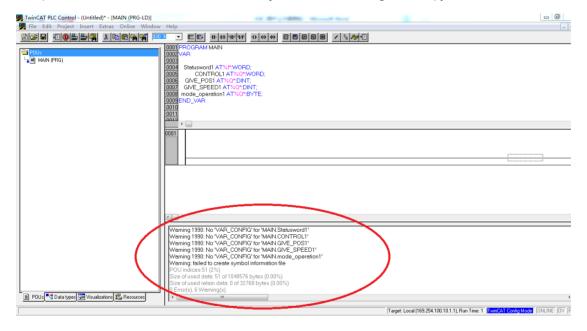
7. Find the X5EN servo drive as shown in the following figure.



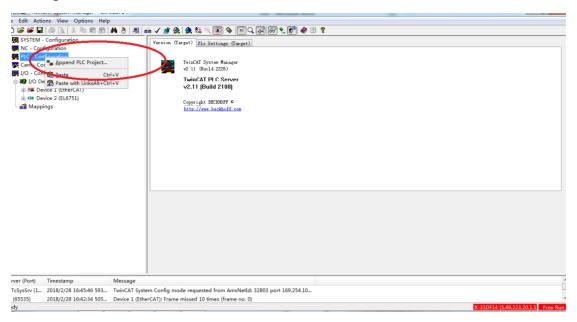
Step 4: PLC programming program building


1. Open TwinCAT PLC and build a new project.

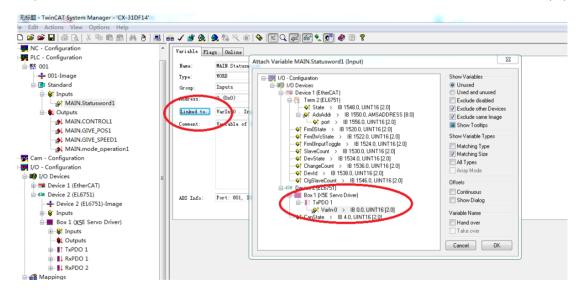

2. Choose a PLC type.


3. Select a programming type, and for this example, select the ladder diagram (LD).

4. Enter the programming page, the establishment of the definition of variables: as shown in the figure, the suffix of the RPDO parameter can only be AT%I*:+ variable length unit, the suffix of the TPDO definition of variables can only be AT%Q*:+ variable length unit, the variable name can be freely named.

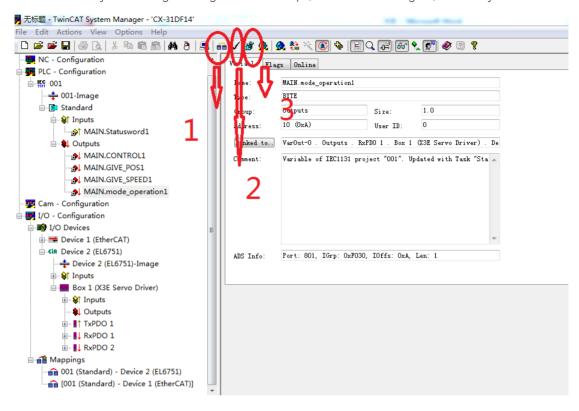


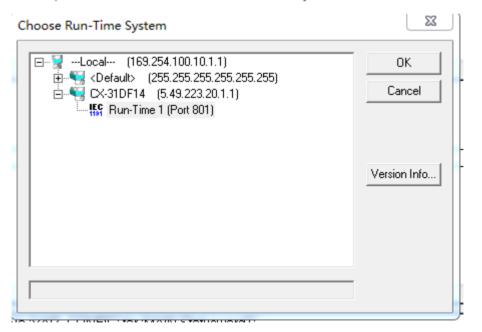
5. After completion, click on "Save", and then select Project \rightarrow reBuild all to generate tpy files.



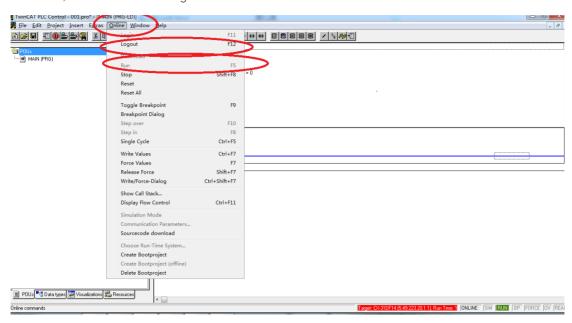
Step 5: Establishment of the link between the X5E parameters and the PLC defined variables

1. Add the tpy file of the PLC program in winCat SystemManager (right-click on PLC configuration->append PLC project...), and make the linking of variables (linked to);


2. Select inputs-main. statusword1-linked to and select TxPDO1_VarIn-0 in Box1 (X5EN Servo Driver) in the pop-up box;


3. Similarly, the other three outputs are linked to the X5EN servo RxPDO3 parameters;

Step 6: Program running


1. Enable the TwinCat SystemManager configuration in 3 steps, as shown in the figure, and finally enter Run mode.

2. Choose the download path in TwinCat PLC: online->select run time-system

3. In TwinCat PLC, click on on-line ->Login and Run.

- 1. Click on Online->create bootproject if it is necessary to be able to run the written PLC program after the CX has been powered off.
 - 2. In order to be able to upload the program, click on Online->sourcecode download

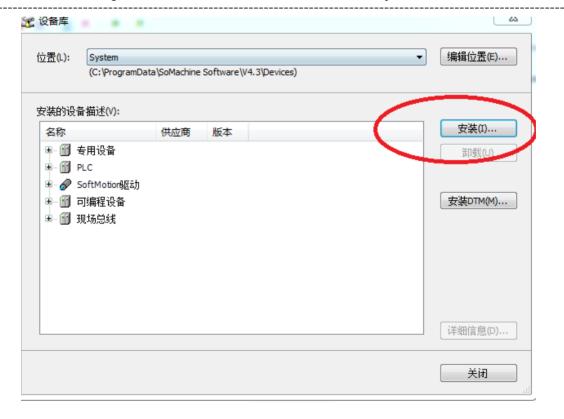
8.2 Connection between X5EN and Schneider controller CANopen

This is an example of connecting the Schneider LMC058LF42 (Somachine V4.3) with the HCFA X5EN servo drive.

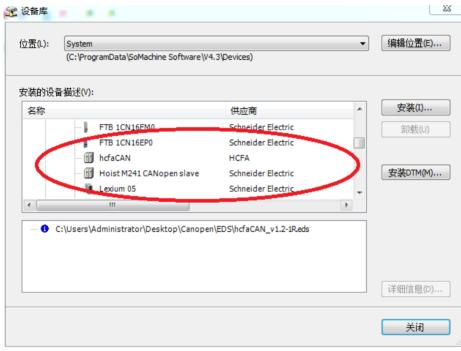
Preparation

- 1. A 120 Ω resistor is connected in parallel between the Schneider LMC058LF42 and the HCFA X5EN servo drive.
- 2. Servo parameter setting

Parameter address	Setting value	Description
P00.01	7	CANopen mode
P09.00	1	Slave address (default 1)
P09.13	5	Baud rate (default 500K)


The following are the steps to prepare for configuration:

- Step 1: Download and install the software Somachine V4.3, the specific version is subject to Schneider's official website
- Step 2: Connect Schneider LMC058LF42 with X5EN servo drive


Step 3: CANopen configuration

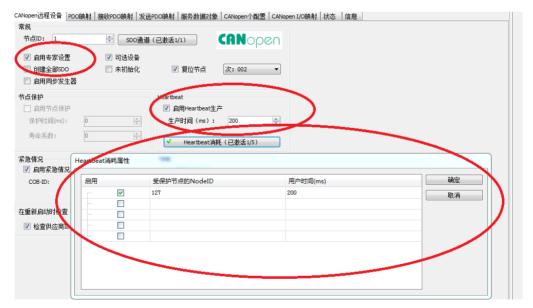
1. New project, add HCFA servo drive EDS device file: Tool \rightarrow Device Library \rightarrow Installation \rightarrow Select HCFA EDS file \rightarrow Open

(Note: After successful loading, the hcfaCAN device file can be found in Device Library → Fieldbus → Remote Devices.)

- 2. Add HCFA servo drive slave.
- 2.1 Device tree \rightarrow CAN0 \rightarrow Right click on "Add Device" \rightarrow Select CANopen performance

2.2 Device tree \rightarrow CAN0 \rightarrow CANopen _performance \rightarrow Right click on "Add Device" \rightarrow Select "Supplier HCFA" to add a CANopen slave.


3. Set communication baud rate: Device tree \rightarrow CAN0 \rightarrow Double left-click \rightarrow Select the required communication baud rate and some other requirements in the pop-up page.


(Note that only one of the functions of heartbeat and node protection can be enabled at most, which will take up a lot of network

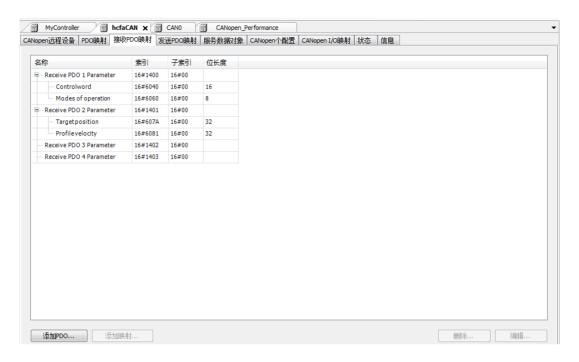
resources, and alarms will be triggered when the parameters are not set appropriately, so it is recommended to disable this function when not in use)

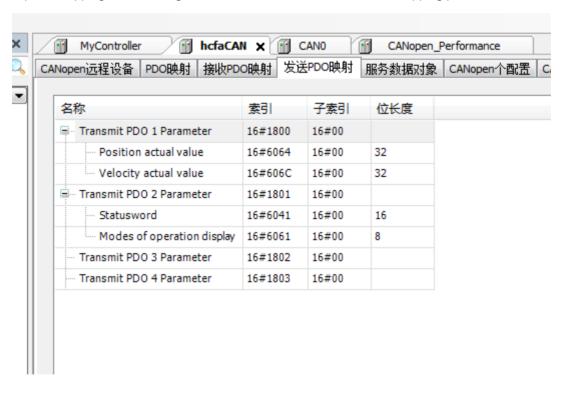
4.1 Master setting: Device tree \rightarrow CAN0 \rightarrow Double click on CANopen_performance \rightarrow Select appropriate parameters in the pop-up page.

4.2 Slave setting: Device tree \rightarrow CAN0 \rightarrow CANopen _performance \rightarrow Double click on hcfaCAN \rightarrow Select appropriate parameters in the pop-up page.

(Note: In addition to unchecking the "Enable heartbeat production", "Heartbeat consumption (activated)" should also be unchecked when disabling slave heartbeats.)

- 5. Transmission mode setting and RPDO/TPDO parameter configuration
- 5.1 In the asynchronous transmission mode
- 1. Master setting: Device tree \rightarrow CAN0 \rightarrow Double click on CANopen _performance \rightarrow Do not check "Enable Synchronized Production" in the pop-up page.

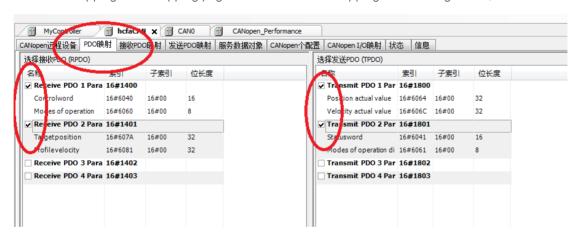

- 2. Slave configuration RPDO/TPDO parameter
- 2.1 Device tree \rightarrow CANopen _performance \rightarrow Double click on hcfaCAN \rightarrow Select "Enable expert enable setting" in the pop-up page.


2.2 Set "Accept PDO mapping parameters": "Accept PDO mapping parameters" page \rightarrow Delete all default parameters and add the desired mapping;

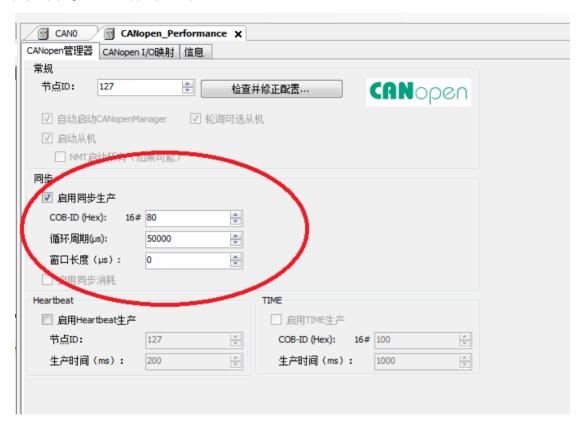
Basic parameter settings for the profile position loop:

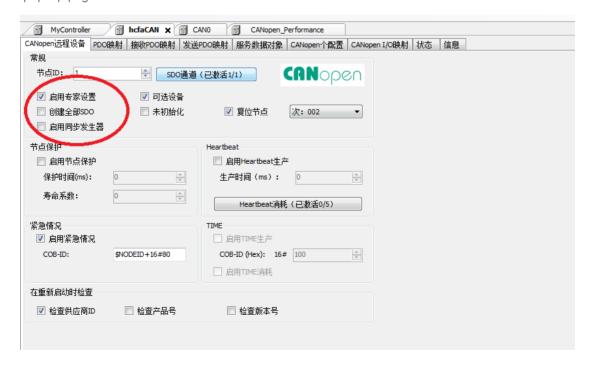
Index	Name	Description
60400010	Controlword	Enable, clear alarms
60600008	Modes of operation	Profile position mode = 1
607A0020	Target position	
60810020	Profile position loop speed setting	

2.3 "Send PDO mapping parameters" setting: "Send PDO mapping parameters" page \rightarrow Delete all the default parameters and add the required mapping (the following screenshot sets two sets of "Send PDO mapping parameters").

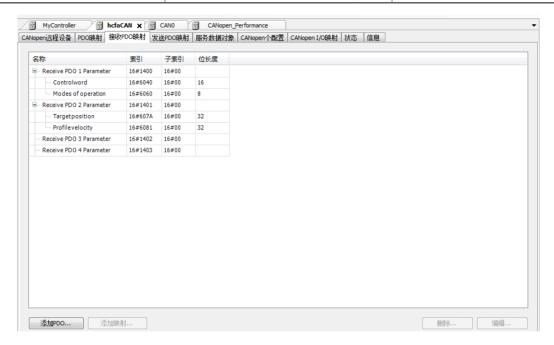

2.4 Set asynchronous transmission mode: "Send PDO mapping parameters" page \rightarrow Double-click the first set of "Send PDO mapping parameters" \rightarrow Select "Asynchronous - device profile specified (Type 255) in the pop-up PDO property box \rightarrow Set the appropriate ban time and event time \rightarrow Set the PDO property of the second group of "Send PDO mapping parameters".

Suppression time: This can be set by selecting "Asynchronous – Device profile specified (Type 255)"; if it is 0, this function is invalid. If it is not 0, it is the minimum interval between frame transmissions.

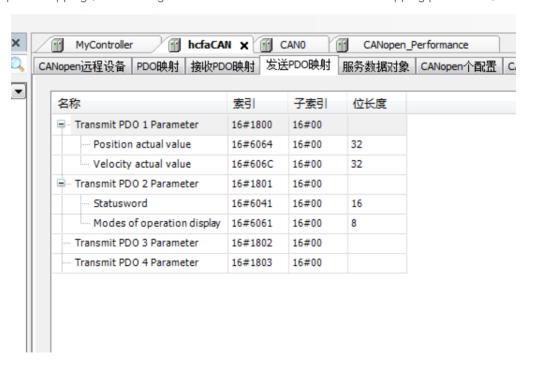

Event time: This can be set by selecting "Asynchronous - Device profile specified (Type 255)"; if it is 0, this function is disabled. If it is not 0, it indicates the periodicity of the timed transmission (this transmission is also limited by the suppression time).


2.5.Effective PDO mapping: PDO mapping page → Check the PDO mapping of the configuration, as follows.

- 5.2 In the synchronous transmission mode
- 1. Master setting: Device tree \rightarrow CAN0 \rightarrow Double click on CANopen _performance \rightarrow Check "Enable synchronous production" in the pop-up page \rightarrow Set appropriate parameters.



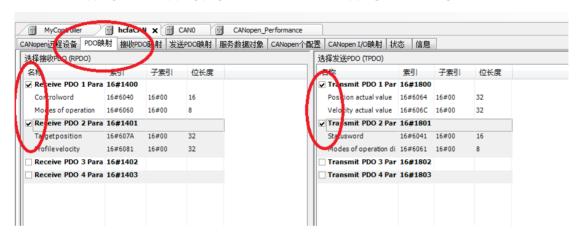
- 2. RPDO/TPDO parameter configuration
- 2.1 Device tree \rightarrow CAN0 \rightarrow CANopen _performance \rightarrow Double-click on hcfaCAN-and select "Enable expert enable settings" in the pop-up page.



2.2 Set "Accept PDO mapping parameters": "Accept PDO mapping parameters" page → Delete all the default parameters to add the required mapping; the basic parameters to be set up for the profile position loop include:

Index	Name	Description
60400010	Controlword	Enable, clear alarms
60600008	Modes of operation	Profile position mode = 1
607A0020	Target position	
60810020	Profile position loop speed setting	

2.3 "Send PDO mapping parameters" setting: "Send PDO mapping parameters" page \rightarrow Delete all the default parameters and add the required mapping (the following screenshot sets two sets of "Send PDO mapping parameters").



2.4 Set synchronous transmission mode: "Send PDO mapping parameters" page \rightarrow Double-click the first set of "Send PDO mapping parameters" \rightarrow Select "Cyclic - Synchronization (Type 1-240)" in the pop-up PDO properties box \rightarrow Set the appropriate number of synchronization. Similarly, set the PDO property of the second set of "Send PDO mapping parameters".

Number of Synchronizations: Effective when Cyclic - Synchronization (Type 1-240) is selected, set the number of synchronizations (in 100us).

2.5.Effective PDO mapping: PDO mapping page \rightarrow Check the PDO mapping of the configuration, as follows.

Step 4: PLC program writing, compile, log in and run the PLC project.

8.3 Connection between X5EN and Inovance controller CANopen

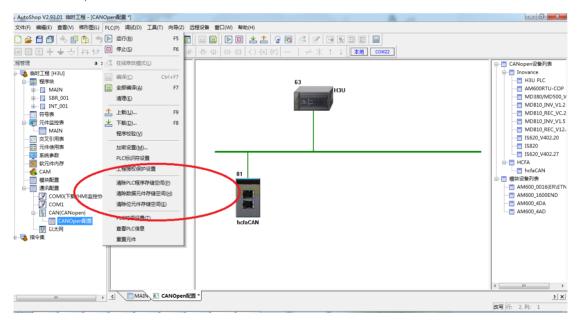
This is an example of connecting the Inovance H3U-3232MR (Autoshop V2.93) with the HCFA X5EN servo drive.

Preparation

Servo parameter setting

Parameter address	Setting value	Description
P0.01	7	CANopen mode
P9.00	1	Slave address (default 1)
P9.13	5	Baud rate (default 500K)

The following are the steps to prepare for configuration:


Step 1: Download and install the software Autoshop, the specific version is subject to Inovance 's official website

Step 2: Connect H3U with X5EN servo drive

(Note that the H3U termination resistor should be written down, and the CAN port should be externally connected to DC24+ and DC24V-, which can be drawn out on the H3U)

Step 3: CANopen configuration

0. To minimize other problems, it is recommended that the PLC be cleared of all internal data before use.

□ 后台设置

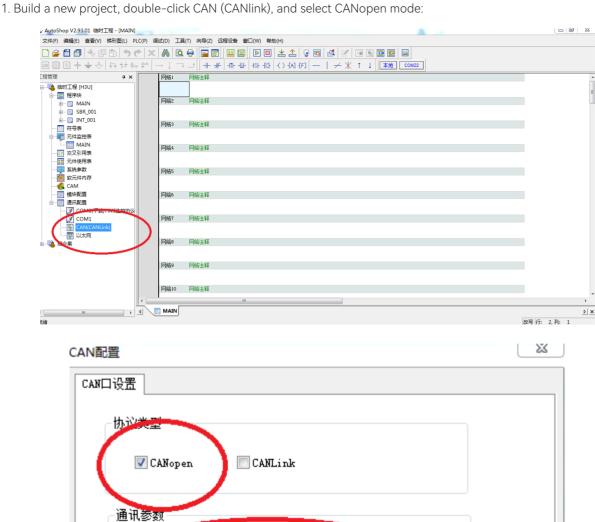
站号: 63

□ 后台设置

波特率: 500

主站配置请右键添加

波特率

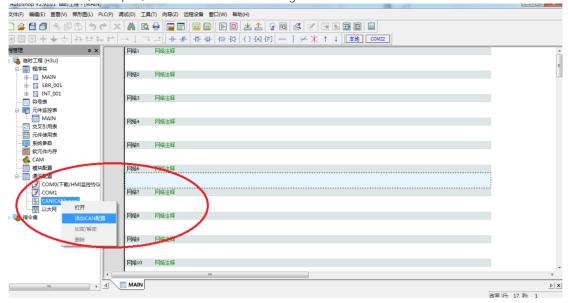

☑ 拨码设置

☑ 拨码设置

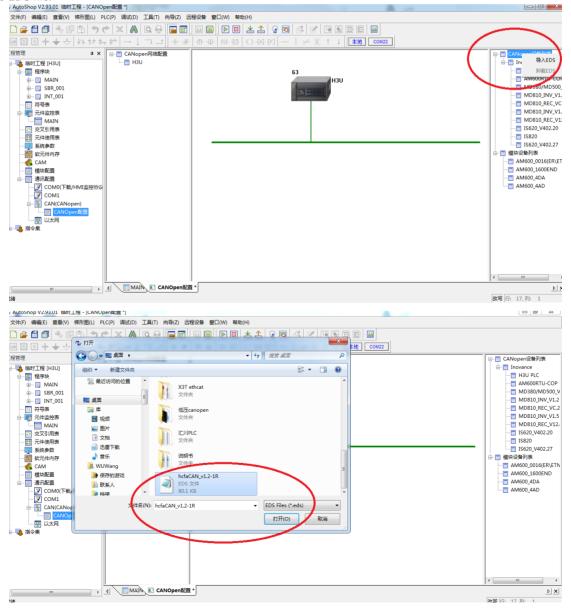
在线写入

Kbps

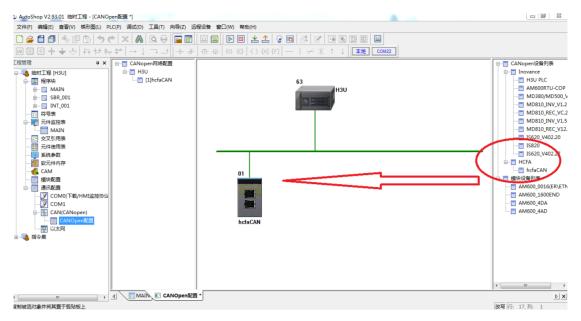
1 <= 站号 <= 63

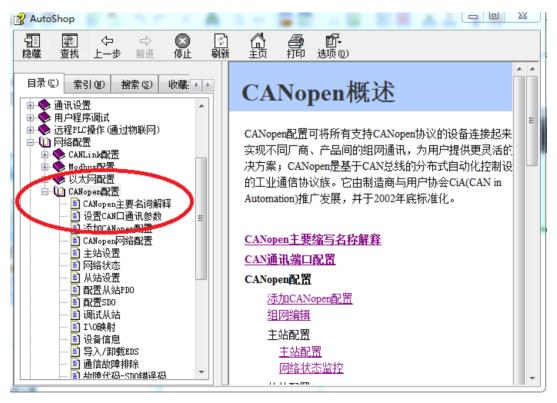

(Note: The default value of station number is 1, check "Background setting" first, then change 1 to 63 in the column of "Station Number", the actual station number can be obtained by clicking "Read online" below.)

在线读取

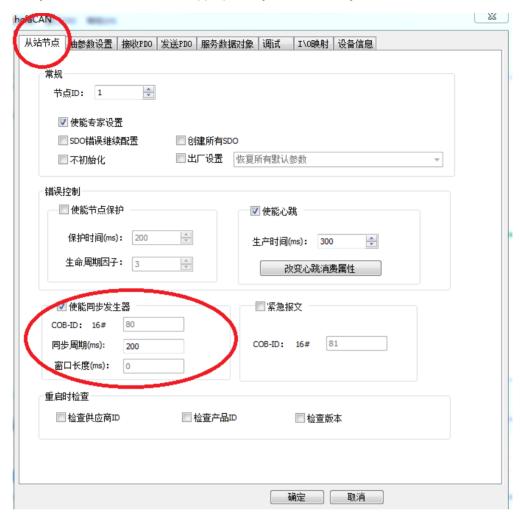

确定

取消


2. Right-click on CAN (CANopen) and select "Add CAN configuration".

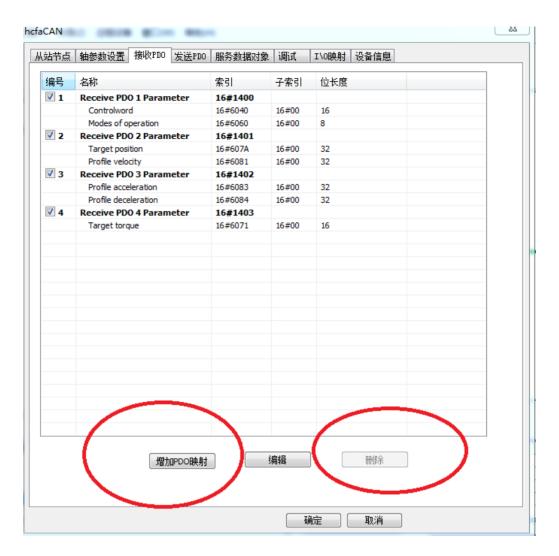

3. Double-click on CANopen configuration, and when a new page appears in the upper right corner, import the HCFA X5EN drive EDS file:

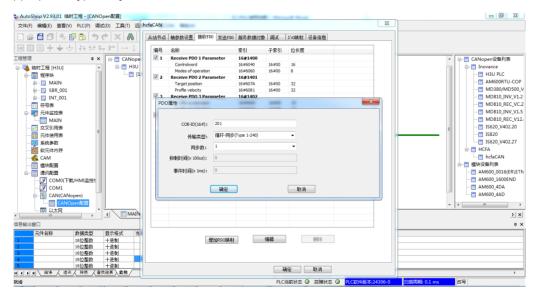
4. Select the hcfaCAN slave, long press and drag it to the blank space below the master to complete the adding of the CANopen slave:



5. Set X5EN drive slave information, refer to Autoshop help instructions (press F1 or Help - Help topics)

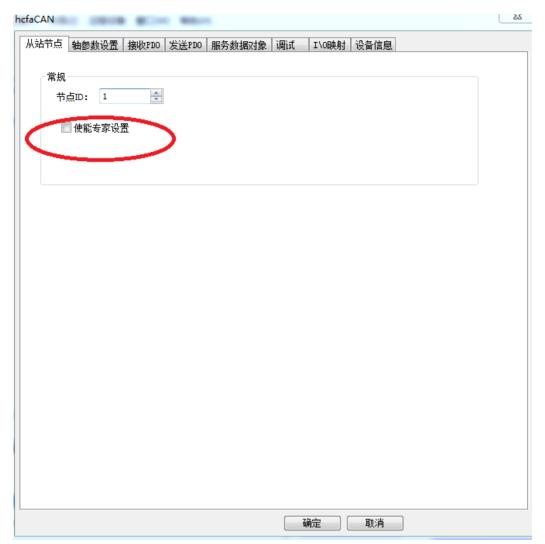
In the synchronous transmission mode:


1. Enable the synchronization function: Double-click on the slave, and check "Enable expert setting" on the "Slave node" page. Check "Enable sync transmitter" and set the appropriate synchronization cycle time.


2. Configure the appropriate "Receive PDO" and "Send PDO" parameters, and click "Add PDO mapping" and "Delete PDO mapping". (Be careful not to set the same "Accept PDO" parameter repeatedly, e.g. for multiple controlwords, as this may cause abnormalities during operation.)

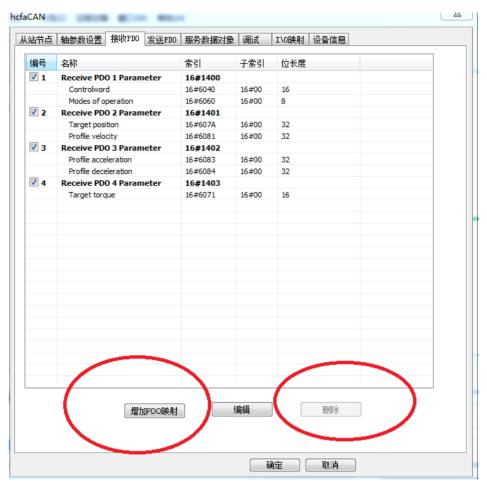
The basic parameters to be set for the profile position loop include:

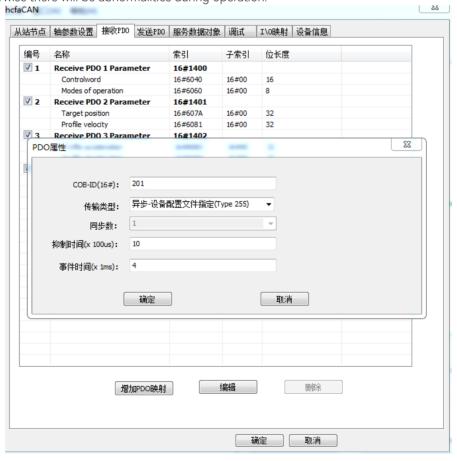
Index	Name	Description
60400010	Controlword	Enable, clear alarms
60600008	Modes of operation	Profile position mode = 1
607A0020	Target position	
60810020	Profile position loop speed setting	



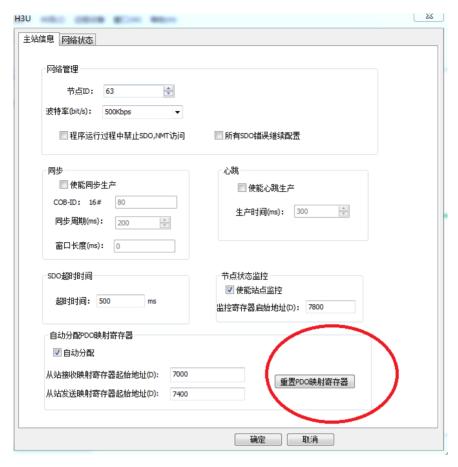
3. Set the appropriate type of synchronous transmission.

In the asynchronous transmission mode:

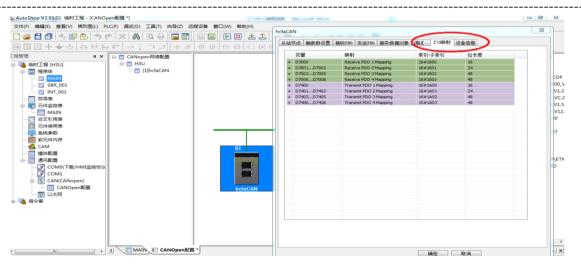

1. Double-click on the slave, use the default parameters in the "Slave node" page, and do not check the " expert enable setting".


2. Configure the appropriate "Receive PDO" and "Send PDO" parameters by clicking on "Add PDO mapping" and "Delete PDO mapping".

The basic parameters to be set for the profile position loop include:


Index	Name	Description		
60400010	Controlword	Enable, clear alarms		
6060008	Mades of eneration	Profile position mode = 1		
60600008	Modes of operation	Position interpolation mode = 7		
607A0020	Target position			
60810020	Profile position loop speed setting			

3. Set the asynchronous transmission information of "Receive PDO" and "Send PDO": Set the reasonable suppression time and event time, otherwise there will be abnormalities during operation.



0. Set the master information parameters and reset the PDO mapping registers (in order to reorganize the addresses of all PDO parameters)

Step 4: PLC programming program building

(Note: The address of the slave parameters of CANopen-configured servo drive can be found in the I/O mapping by double-clicking on the slave icon, and the H3U defaults to start from the D7000 and D7400.)

Step 5: Compile and run the PLC program

Chapter 9 Parameter list and object dictionary

9.1	1000H List of object group	264
9.2	2100H List of object group	266
	Group 2100h: Basic setting	266
	Group 2101h: Gain tuning	267
	Group 2102h: Vibration suppression	269
	Group 2103h: Speed & torque control	270
	Group 2104h: Digital input and output	272
	Group 2105h: Analog input and output	274
	Group 2106h: Expansion parameters	275
	Group 2107h: Auxiliary function	277
	Group 2108h: Internal position instruction	278
	Group 2109h: Communication setting	282
	Group 2114h: Key and communication control interface	283
	Group 2115h: Status parameters	283
9.3	6000H Object dictionary list	285
	6000h Object dictionary description	288

1000H List of object group 9.1

Index	Sub-index	Name	Data type	Default
1000h	00h	Device type	Unsigned32	0x20192(131474)
1001h	00h	Error register	Unsigned8	0x0
1002h	00h	Manufacturer status register	Unsigned32	
10001	001-	Predefined error domain: number of	Linaine ad 22	
1003h	00h	errors	Unsigned32	
	01h~FEh	Standard error domain		
1005h	00h	Synchronization COB-ID	Unsigned32	
1006h		Communication cycle	Unsigned32	
1007h		Synchronization window length	Unsigned32	
1008h		Manufacturer device name	VISIBLE_STRING	HCFA X5E Servo Drive
1009h		Manufacturer hardware version	VISIBLE_STRING	0.1
1010h	00	Maximum number of sub-indexes	Unsigned32	1
	01	Save all parameters	Unsigned32	0
100Ah		Manufacturer software version	VISIBLE_STRING	5.1
100Ch		Monitoring cycle	Unsigned16	
100Dh		Survival cycle factor	Unsigned8	
1010h		Save parameters	Unsigned32	
1011h		Restore default parameters	Unsigned32	
1012h		Timestamp object COB-ID	Unsigned32	
1013h		High resolution timestamp	Unsigned32	
1014h		EMCY COB-ID	Unsigned32	
1015h		EMCY inhibit time	Unsigned16	
1016h		Consumer heartbeat timeout	Unsigned32	
1017h		Producer heartbeat timeout	Unsigned16	
<u> </u>	0	Object identity		4
	1	Supplier ID		0x 000116C7
1018h	2	Product code		0x 003E0402
	3	Revision number		0x002
	4	Sequence number		0x001
1019h		Synchronization counter overflow value	Unsigned8	
1020h		Configuration verification	Unsigned32	
1021h		Storage EDS		
1022h		Storage format	Unsigned16	
1023h		OS command		
1024h		OS command mode	Unsigned8	
1025h		OS debugging interface		
1025h		OS prompt command interface	Unsigned8	
1020H		Module list	Unsigned16	
1027H		Emergency consumer object	Unsigned 32	
1028H		Error behavior object	Unsigned8	
102911 10F1h	0	Number of error setting indexes	Onsignedo	2
IUFIII	1	Local error response		0x001
	2			0x0001
		Synchronization error count limit		UXUUC (12)
	0	Synchronization management type		4

Index	Sub-index	Name	Data type	Default
	1	Subindex 1		0x01
	2	Subindex 2		0x02
	3	Subindex 3		0x03
	4	Subindex 4		0x04
1600		RxPDO mapping parameters (group 1)		
1601		RxPDO mapping parameters (group 2)		
1602		RxPDO mapping parameters (group 3)		
1603		RxPDO mapping parameters (group 4)		
1604		RxPDO mapping parameters (group 5)		Compatible with Omron
1A00		TxPDO mapping parameters (group 1)		
1A01		TxPDO mapping parameters (group 2)		
1A02		TxPDO mapping parameters (group 3)		
1A03		TxPDO mapping parameters (group 4)		
1A04		TxPDO mapping parameters (group 5)		Compatible with Omror
1010	0	Number of RxPDO allocation indexes		1
1C12	1	Subindex 1		0x1600 (5632)
1010	0	TxPDO allocation index number		1
1C13	1	Subindex 1		0x1A00 (6656)
	0	Synchronization output parameter index		22
	0	number		32
	1	Synchronization type		0x0002(0: free run
	ı	Зунстионізаціон суре		2: DC SYNC0)
	2	Cycle time		(Unit: ns)
1C32	4	Supported synchronization type		0x0005(5)
1032	5	Minimum cycle time		0x0003D090(250000)
	6	Calculation and copy time		0x00001388(5000)
	8	Synchronization time acquisition		0x0000(0)
	9	Delay time		0x00000000(0)
	А	Synchronization 0 cycle time		0x00989680(10000000)
	В	Synchronization event loss		0x0000(0)
	0	Synchronization input parameter index number		32
				Ox0002 (0: free run
	1	Synchronization type		2: DC SYNC0)
	2	Cycle time		(Unit: ns)
	4	Supported synchronization type		0x0005(5)
	5	Minimum cycle time		0x0003D090(250000)
1C33	6	Calculation and copy time		0x0000000(0)
	8	Synchronization time acquisition		0x0000(0)
	9	Delay time		0x00000000(0)
	A	Synchronization 0 cycle time		0x00989680(10000000)
	В	Synchronization event loss		0x0000(0)
	С	Minimum cycle time		0x0000(0)
	20	Synchronization error		FALSE

9.2 2100H List of object group

Group 2100h: Basic setting

Index	Sub-index	Name	Unit	Data type	Data range	Effective	Modes of operation	PDO mapping
2100h	00h	Basic setting	-	-	-	-	-	-
2100h	01h	Motor rotation positive direction definition	1	U16	0-1	Immediate	ALL	NO
2100h	02h	Modes of operation	1	U16	0-7	Restart	ALL	NO
2100h	03h	Real-time auto-tuning mode	1	U16	0-3	Immediate	ALL	NO
2100h	04h	Rigidity grade setting	1	U16	0-31	Immediate	ALL	NO
2100h	05h	Inertia ratio	0.01	U16	0-6000	Immediate	ALL	NO
2100h	06h	Position instruction source	1	U16	0-3	Restart	ALL	NO
2100h	08h	Pulse train form	1	U16	0-5	Restart	pp hm	NO
2100h	09h	Required pulse instruction number per turn of motor rotation (32-bit)	1Unit	U32	0-1073741824	Immediate	pp hm	NO
2100h	0Bh	Electronic gear 1 numerator (32-bit)	1	U32	0-1073741824	Immediate	pp hm	NO
2100h	0Dh	Electronic gear denominator (32-bit)	1	U32	1-1073741824	Immediate	pp hm	NO
2100h	0Fh	Pulse number per turn of motor rotation (32-bit)	1PPR	U32	16-1073741824	Restart	pp hm	NO
2100h	11h	Pulse output positive direction definition	1	U16	0-1	Restart	ALL	NO
2100h	12h	Pulse output OZ polarity	1	U16	0-3	Restart	pp hm	NO
2100h	13h	Pulse output function selection	1	U16	0-3	Restart	pp hm	NO
2100h	14h	Overlarge position deviation threshold (32-bit)	1P	U32	1-1073741824	Immediate	ALL	NO
2100h	16h	Braking resistor setting	1	U16	0-1	Immediate	ALL	NO
2100h	17h	External resistor power capacity	1W	U16	1-65535	Immediate	ALL	NO
2100h	18h	External resistor value	1Ω	U16	1-1000	Immediate	ALL	NO
2100h	19h	External resistor heating time constant	0.1s	U16	1-30000	Immediate	ALL	NO
2100h	1Ah	Regenerative voltage point	1	U16	0-65535	Immediate	ALL	NO
2100h	1Bh	Step value setting	1	116	-9999-9999	Immediate	pp hm	NO
2100h	1Ch	High pulse train form	1	U16	0-5	Restart	pp hm	NO

Group 2101h: Gain tuning

Index	Sub-index	Name	Unit	Data type	Data range	Effective	Modes of operation	PDO mapping
2101h	00h	Gain tuning	-	-	-	-	-	-
2101h	01h	Position loop gain 1	0.1/s	U16	10-20000	Immediate	pp hm	NO
2101h	02h	Speed loop gain 1	0.1Hz	U16	10-20000	Immediate	pp hm csv pv	NO
2101h	03h	Speed loop integral time 1	0.01ms	U16	15-51200	Immediate	pp hm csv pv	NO
2101h	04h	Speed detection filtering 1	1	U16	0-15	Immediate	ALL	NO
2101h	05h	Torque instruction filtering 1	0.01ms	U16	0-10000	Immediate	ALL	NO
2101h	06h	Position loop gain 2	0.1/s	U16	10-20000	Immediate	pp hm	NO
2101h	07h	Speed loop gain 2	0.1Hz	U16	10-20000	Immediate	pp hm csv pv	NO
2101h	08h	Speed loop integral time 2	0.01ms	U16	15-51200	Immediate	pp hm csv pv	NO
2101h	09h	Speed detection filtering 2	1	U16	0-15	Immediate	ALL	NO
2101h	0Ah	Torque instruction filtering 2	0.01ms	U16	0-10000	Immediate	ALL	NO
2101h	0Bh	Speed regulator PDFF coefficient	0.1%	U16	0-1000	Immediate	pp hm csv pv	NO
2101h	0Ch	Speed feed-forward control selection	1	U16	0-1	Restart	pp hm	NO
2101h	0Dh	Speed feed-forward gain	0.1%	U16	0-1500	Immediate	pp hm	NO
2101h	0Eh	Speed feed-forward filtering time	0.01ms	U16	0-6400	Immediate	pp hm	NO
2101h	0Fh	Torque feed-forward control selection	1	U16	0-2	Restart	pp hm csv pv	NO
2101h	10h	Torque feed-forward gain	0.1%	U16	0-1000	Immediate	pp hm csv pv	NO
2101h	11h	Torque feed-forward filtering time	0.01ms	U16	0-6400	Immediate	pp hm csv pv	NO

Index	Sub-index	Name	Unit	Data type	Data range	Effective	Modes of operation	PDO mapping
							pp	
2101h	12h	DI function GAIN—SWITCH	1	U16	0-1	Immediate	hm	NO
		action switching selection					csv	
							pp	
		Position control switching					hm	
2101h	13h	mode	1	U16	0-10	Immediate	CSV	NO
							pv	
							pp	
2101h	14h	Position control switching	0.1ms	U16	0-1000	Immediate	hm	NO
210111	1-111	delay	0.11113	010	0 1000	IIIIIICalate	CSV	110
							pv	
							pp	
2101h	15h	Position control switching	1	U16	0-20000	Immediate	hm	NO
		class					CSV	
							pv	
		Position control gain					pp hm	
2101h	16h	switching hysteresis	1	U16	0-20000	Immediate	CSV	NO
							pv	
		Position gain switching time					рр	
04041	471		0.4		0.10000		hm	
2101h	17h		0.1ms	U16	0-10000	Immediate	CSV	NO
							pv	
2101h	18h	Speed control switching	1	U16	0-5	Immediate	CSV	NO
	1011	mode		010	0-3	IIIIIIediate	pv	110
2101h	19h	Speed control switching	0.1ms	U16	0-1000	Immediate	CSV	NO
		delay					pv	
2101h	1Ah	Speed control switching	1	U16	0-20000	Immediate	CSV	NO
		class					pv	
2101h	1Bh	Speed control switching	1	U16	0-20000	Immediate	CSV	NO
		hysteresis Torque control switching					pv	
2101h	1Ch	mode	1	U16	0-3	Immediate	cst pt	NO
		Torque control switching					cst	
2101h	1Dh	delay	0.1ms	U16	0-1000	Immediate	pt	NO
		Torque control switching					cst	
2101h	1Eh	class	1	U16	0-20000	Immediate	pt	NO
04041	4.51	Torque control switching	4	1147	0.00000	1. 1.	cst	NO
2101h	1Fh	hysteresis	1	U16	0-20000	Immediate	pt	NO
2101h	20h	Observer enabled	1	U16	0-2	Restart	ALL	NO
2101h	21h	Observer cut-off frequency	1Hz	U16	0-500	Restart	ALL	NO
2101h	22h	Observer phase compensation time	0.01ms	U16	0-10000	Immediate	ALL	NO
2101h	23h	Observer inertia coefficient	1	U16	0-10000	Restart	ALL	NO
	2311	Observer incrua coefficient	1	010	0 10000	restart	ALL	110

Group 2102h: Vibration suppression

Index	Sub-index	Name	Unit	Data type	Data range	Effective	Modes of operation	PDO mapping
2102h	00h	Vibration suppression	=	-	-	-	-	-
2102h	01h	Position instruction smoothing filter	0.1ms	U16	0-65535	Immediate	pp hm	NO
2102h	02h	Position instruction FIR filter	0.1ms	U16	0-1280	Immediate	pp hm	NO
2102h	03h	Adaptive filter mode	1	U16	0-4	Immediate	ALL	NO
2102h	04h	Adaptive filter load mode	1	U16	0-1	Immediate	ALL	NO
2102h	05h	The first notch filter frequency (manual)	1Hz	U16	50-5000	Immediate	ALL	NO
2102h	06h	The first notch filter width	1	U16	0-12	Immediate	ALL	NO
2102h	07h	The first notch filter depth	1	U16	0-99	Immediate	ALL	NO
2102h	08h	The second notch filter frequency (manual)	1Hz	U16	50-5000	Immediate	ALL	NO
2102h	09h	The second notch filter width	1	U16	0-12	Immediate	ALL	NO
2102h	0Ah	The second notch filter depth	1	U16	0-99	Immediate	ALL	NO
2102h	0Bh	The third notch filter frequency	1Hz	U16	50-5000	Immediate	ALL	NO
2102h	0Ch	The third notch filter width	1	U16	0-12	Immediate	ALL	NO
2102h	0Dh	The third notch filter depth	1	U16	0-99	Immediate	ALL	NO
2102h	0Eh	The fourth notch filter frequency	1Hz	U16	50-5000	Immediate	ALL	NO
2102h	0Fh	The fourth notch filter width	1	U16	0-12	Immediate	ALL	NO
2102h	10h	The fourth notch filter depth	1	U16	0-99	Immediate	ALL	NO
2102h	14h	Position instruction FIR filter 2	0.1ms	U16	0-1280	Immediate	pp hm	NO
2102h	15h	The first vibration damping frequency	0.1Hz	U16	0-1000	Immediate	pp hm csv pv	NO
2102h	16h	The first vibration damping filtering setting	0.1	U16	0-10	Immediate	pp hm csv pv	NO
2102h	17h	The second vibration damping frequency	0.1Hz	U16	0-1000	Immediate	pp hm csv pv	NO
2102h	18h	The second vibration damping filtering setting	0.1	U16	0-10	Immediate	pp hm csv pv	NO
2102h	20h	Resonance point 1 frequency	1Hz	U16	0-5000	Display parameter	ALL	NO
2102h	21h	Resonance point 1 bandwidth	1	U16	0-20	Display parameter	ALL	NO

Index	Sub-index	Name	Unit	Data type	Data range	Effective	Modes of operation	PDO mapping
2102h	22h	Resonance point 1	1	U16	0-1000	Display	ALL	NO
210211	2211	amplitude	1	010	0-1000	parameter	ALL	NO
2102h	23h	Resonance point 2	1Hz	U16	0-5000	Display	ALL	NO
210211	2311	frequency	IΠZ	010	0-3000	parameter	ALL	INO
2102h	24h	Resonance point 2	1	U16	0-20	Display	ALL	NO
210211	2411	bandwidth	ı	010	0-20	parameter	ALL	INO
2102h	25h	Resonance point 2	1	U16	0-1000	Display	ALL	NO
Z 1 U Z 11	2311	amplitude	l I	010	0-1000	parameter	ALL	INO

Group 2103h: Speed & torque control

Index	Sub-index	Name	Unit	Data type	Data range	Effective	Modes of operation	PDO mapping	
2103h	00h	Speed & torque control	=	-	=	-	-	-	
2103h	01h	Speed instruction source	1	U16	0-6	Restart	CSV	NO	
	0111	Speed instruction source	· · ·	010	0-0	Restart	pv		
2103h	04h	Speed instruction setting	1rpm	116	-9000-9000	Immediate	CSV	NO	
	0 111	value		110	7000 7000	IIIIIIcalate	pv		
2103h	05h	JOG speed setting	1rpm	U16	0-3000	Immediate	CSV	NO	
		1	'				pv		
							pp		
2103h	09h	Torque limit source	1	U16	0-3	Immediate	hm	NO	
							CSV		
							pv		
							pp		
2103h	0Ah	Internal forward torque limit	0.1%	U16	0-5000	Immediate	hm	NO	
							CSV		
							pv		
		h Internal reverse torque limit					hm		
2103h	0Bh		0.1%	U16	0-5000	Immediate	CSV	NO	
							pv		
							pp		
04001	0.01	E tamal famound to make it with		. 0.40/	1147	0. 5000		hm	NIO
2103h	0Ch	External forward torque limit	0.1%	U16	0-5000	Immediate	CSV	NO	
							pv		
							pp		
2103h	0Dh	External reverse torque limit	0.1%	U16	0-5000	Immediate	hm	NO	
210311	ODII	External reverse torque ill'ill	0.176	010	0-3000	IIIIIIediate	CSV	NO	
							pv		
							CSV		
2103h	0Fh	Acceleration time 1	1ms	U16	0-65535	Immediate	pv	NO	
2.00	0	, idealarding in time i		0.0	0 00000		cst		
							pt		
							CSV	NO	
2103h	10h	10h Deceleration time 1	1ms	U16	0-65535	Immediate	pv		
							cst		
							pt		

Index	Sub-index	Name	Unit	Data type	Data range	Effective	Modes of operation	PDO mapping
2103h	11h	Acceleration time 2	1ms	U16	0-65535	Immediate	csv pv	NO
2103h	12h	Deceleration time 2	1ms	U16	0-65535	Immediate	csv pv	NO
2103h	14h	Zero-speed clamp function	1	U16	0-2	Immediate	csv pv cst pt	NO
2103h	15h	Zero-speed clamp threshold value	1rpm	U16	0-1000	Immediate	csv pv cst pt	NO
2103h	17h	Torque instruction source	1	U16	0-4	Restart	cst pt	NO
2103h	1Ah	Torque instruction key set value	0.1%	l16	-3000-3000	Immediate	cst pt	NO
2103h	1Bh	Speed limit source under torque control	1	U16	0-1	Immediate	cst pt	NO
2103h	1Ch	Internal positive speed limit	1	U16	0-9000	Immediate	cst pt	NO
2103h	1Dh	Internal negative speed limit	1	U16	0-9000	Immediate	cst	NO
2103h	1Eh	Hard limit torque limit	0.1%	U16	0-4000	Immediate	ALL	NO
2103h	1Fh	Hard limit torque limit detection time	1	U16	0-2000	Immediate	ALL	NO
2103h	20h	Speed instruction number selection mode	1	U16	0-1	Restart	csv pv	NO
2103h	21h	Acceleration time number for speed instruction from segment 1 to 8	1	U16	0-1	Immediate	csv	NO
2103h	22h	Deceleration time number for speed instruction from segment 1 to 8	1	U16	0-1	Immediate	csv pv	NO
2103h	23h	Acceleration time number for speed instruction from segment 9 to 16	1	U16	0-1	Immediate	csv	NO
2103h	24h	Deceleration time number for speed instruction from segment 9 to 16	1	U16	0-1	Immediate	csv pv	NO
2103h	25h	Segment 1 speed	1rpm	116	-9000-9000	Immediate	csv pv	NO
2103h	26h	Segment 2 speed	1rpm	116	-9000-9000	Immediate	csv pv	NO
2103h	27h	Segment 3 speed	1rpm	116	-9000-9000	Immediate	csv pv	NO
2103h	28h	Segment 4 speed	1rpm	116	-9000-9000	Immediate	csv	NO
2103h	29h	Segment 5 speed	1rpm	116	-9000-9000	Immediate	csv pv	NO

Index	Sub-index	Name	Unit	Data type	Data range	Effective	Modes of operation	PDO mapping
2103h	2Ah	Segment 6 speed	1rpm	116	-9000-9000	Immediate	CSV	NO
	ZAII	Segment o speed	Прш	110	-7000-7000	IIIIIIediate	pv	110
2103h	2Bh	Segment 7 speed	1rpm	116	-9000-9000	Immediate	CSV	NO
	2011	ocginent / speed	Прш	110	7000 7000	iiiiiicalate	pv	110
2103h	2Ch	Segment 8 speed	1rpm	116	-9000-9000	Immediate	CSV	NO
	2011	ocginent o speed	Πριιι	110	7000 7000	IIIIIICalate	pv	110
2103h	2Dh	Segment 9 speed	1rpm	116	-9000-9000	Immediate	CSV	NO
	2011	ocginent / speed	Πριιι	110	7000 7000	iiiiiicalate	pv	110
2103h	2Eh	Segment 10 speed	1rpm	116	-9000-9000	Immediate	CSV	NO
	2211	oegment to speed	119111	110	7000 7000	mmediate	pv	110
2103h	2Fh	Segment 11 speed	1rpm	116	-9000-9000	Immediate	CSV	NO
	2111	oegment 11 speed	119111	110	7000 7000	mmediate	pv	
2103h	30h	Segment 12 speed	1rpm	116	-9000-9000	Immediate	CSV	NO
	0011		110111	110	7000 7000	minicalate	pv	
2103h	31h	Segment 13 speed	1rpm	116	-9000-9000	Immediate	CSV	NO
	0			1.0			pv	
2103h	32h	Segment 14 speed	1rpm	116	-9000-9000	Immediate	CSV	NO
	0211		119111	110	7000 7000	IIIIIICalate	pv	
2103h	33h	Segment 15 speed	1rpm	116	-9000-9000	Immediate	CSV	NO
	5511			170		mmediate	pv	
2103h	34h	Segment 16 speed	1rpm	116	-9000-9000	Immediate	CSV	NO
	0 111		'''	110			pv	1,0

Group 2104h: Digital input and output

Index	Sub-index	Name	Unit	Data type	Data range	Effective	Modes of operation	PDO mapping
2104h	00h	Digital input and output	=	-	=	-	-	=
2104h	01h	Normal DI filter selection	1us	U16	0-10000	Immediate	ALL	NO
2104h	02h	DI1 terminal function selection	1	U16	0-63	Restart	ALL	NO
2104h	03h	DI2 terminal function selection	1	U16	0-63	Restart	ALL	NO
2104h	04h	DI3 terminal function selection	1	U16	0-63	Restart	ALL	NO
2104h	05h	DI4 terminal function selection	1	U16	0-63	Restart	ALL	NO
2104h	06h	DI5 terminal function selection	1	U16	0-63	Restart	ALL	NO
2104h	07h	DI6 terminal function selection	1	U16	0-63	Restart	ALL	NO
2104h	08h	DI7 terminal function selection	1	U16	0-63	Restart	ALL	NO
2104h	09h	DI8 terminal function selection	1	U16	0-63	Restart	ALL	NO
2104h	0Ah	DI9 terminal function selection	1	U16	0-63	Restart	ALL	NO
2104h	0Ch	DI1 terminal logic selection	1	U16	0-1	Restart	ALL	NO
2104h	0Dh	DI2 terminal logic selection	1	U16	0-1	Restart	ALL	NO

Index	Sub-index	Name	Unit	Data type	Data range	Effective	Modes of operation	PDO mapping
2104h	0Eh	DI3 terminal logic selection	1	U16	0-1	Restart	ALL	NO
2104h	0Fh	DI4 terminal logic selection	1	U16	0-1	Restart	ALL	NO
2104h	10h	DI5 terminal logic selection	1	U16	0-1	Restart	ALL	NO
2104h	11h	DI6 terminal logic selection	1	U16	0-1	Restart	ALL	NO
2104h	12h	DI7 terminal logic selection	1	U16	0-1	Restart	ALL	NO
2104h	13h	DI8 terminal logic selection	1	U16	0-1	Restart	ALL	NO
2104h	14h	DI9 terminal logic selection	1	U16	0-1	Restart	ALL	NO
2104h	16h	DO1 terminal function selection	1	U16	0-31	Restart	ALL	NO
2104h	17h	DO2 terminal function selection	1	U16	0-31	Restart	ALL	NO
2104h	18h	DO3 terminal function selection	1	U16	0-31	Restart	ALL	NO
2104h	19h	DO4 terminal function selection	1	U16	0-31	Restart	ALL	NO
2104h	1Ah	DO5 terminal function selection	1	U16	0-31	Restart	ALL	NO
2104h	1Bh	DO6 terminal function selection	1	U16	0-31	Restart	ALL	NO
2104h	1Ch	DO7 terminal function selection	1	U16	0-31	Restart	ALL	NO
2104h	1Dh	DO8 terminal function selection	1	U16	0-31	Restart	ALL	NO
2104h	1Eh	DO9 terminal function selection	1	U16	0-31	Restart	ALL	NO
2104h	20h	DO1 terminal logic level selection	1	U16	0-1	Restart	ALL	NO
2104h	21h	DO2 terminal logic level selection	1	U16	0-1	Restart	ALL	NO
2104h	22h	DO3 terminal logic level selection	1	U16	0-1	Restart	ALL	NO
2104h	23h	DO4 terminal logic level selection	1	U16	0-1	Restart	ALL	NO
2104h	24h	DO5 terminal logic level selection	1	U16	0-1	Restart	ALL	NO
2104h	25h	DO6 terminal logic level selection	1	U16	0-1	Restart	ALL	NO
2104h	26h	DO7 terminal logic level selection	1	U16	0-1	Restart	ALL	NO
2104h	27h	DO8 terminal logic level selection	1	U16	0-1	Restart	ALL	NO
2104h	28h	DO9 terminal logic level selection	1	U16	0-1	Restart	ALL	NO
2104h	2Ah	FunINL signal unassigned status (HEX)	1	U16	0-65535	Immediate	ALL	NO
2104h	2Bh	FunINH signal unassigned status (HEX)	1	U16	0-65535	Immediate	ALL	NO
2104h	2Ch	Motor rotational signal (TGON) threshold	1rpm	U16	0-1000	Immediate	ALL	NO

Index	Sub-index	Name	Unit	Data type	Data range	Effective	Modes of operation	PDO mapping
2104h	2Dh	Speed conformity signal width	1rpm	U16	10-1000	Immediate	csv pv	NO
2104h	2Eh	Speed specified value arrival	1rpm	U16	10-9000	Immediate	ALL	NO
2104h	30h	Positioning completion range	1P	U16	1-65535	Immediate	csp pp hm	NO
2104h	31h	Positioning completion output setting	1	U16	0-7	Immediate	csp pp hm	NO
2104h	32h	Positioning completion holding time	1ms	U16	1-65535	Immediate	csp pp hm	NO
2104h	33h	Positioning near range	1P	U16	1-65535	Immediate	csp pp hm	NO
2104h	34h	Servo OFF delay time after holding brake taking action when speed is 0	1ms	U16	0-9999	Immediate	ALL	NO
2104h	35h	Speed setting for holding brake to take action in motion	1rpm	U16	0-3000	Immediate	ALL	NO
2104h	36h	Waiting time for holding brake to take action in motion	1ms	U16	0-9999	Immediate	ALL	NO
2104h	37h	Z pulse OC output enable	1	U16	0-3	Immediate	ALL	NO
2104h	38h	Torque set value arrival	0.1%	U16	0-3000	Immediate	ALL	NO
2104h	39h	Torque arrival detection width	0.1%	U16	0-3000	Immediate	ALL	NO
2104h	3Ah	Z-phase pulse width adjustment	1	U16	0-100	Immediate	ALL	NO
2104h	3Bh	Zero-speed signal output threshold	1rpm	U16	0-1000	Immediate	ALL	NO

Group 2105h: Analog input and output

Index	Sub-index	Name	Unit	Data type	Data range	Effective	Modes of operation	PDO mapping
2105h	00h	Analog input and output	=	-	=	-	-	-
2105h	01h	Al1 minimum input	0.01V	116	-1000-1000	Immediate	ALL	NO
2105h	02h	Setting value corresponding to the Al1 minimum input	0.1%	116	-1000-1000	Immediate	ALL	NO
2105h	03h	Al1 maximum input	0.01V	116	-1000-1000	Immediate	ALL	NO
2105h	04h	Setting value corresponding to the AI1 maximum input	0.1%	116	-1000-1000	Immediate	ALL	NO
2105h	05h	Al1 zero-point fine tuning	1mV	116	-500-500	Immediate	ALL	NO
2105h	06h	Al1 dead band setting	0.1%	U16	0-200	Immediate	ALL	NO
2105h	07h	Al1 input filtering time	0.1ms	U16	0-65535	Immediate	ALL	NO
2105h	08h	Al2 minimum input	0.01V	116	-1000-1000	Immediate	ALL	NO

2105h	09h	Setting value corresponding to the Al2 minimum input	0.1%	116	-1000-1000	Immediate	ALL	NO
2105h	0Ah	Al2 maximum input	0.01V	l16	-1000-1000	Immediate	ALL	NO
2105h	0Bh	Setting value corresponding to the AI2 maximum input	0.1%	116	-1000-1000	Immediate	ALL	NO
2105h	0Ch	Al2 zero-point fine tuning	1mV	I16	-500-500	Immediate	ALL	NO
2105h	0Dh	Al2 dead band setting	0.1%	U16	0-200	Immediate	ALL	NO
2105h	0Eh	Al2 input filtering time	0.1ms	U16	0-65535	Immediate	ALL	NO
2105h	0Fh	Al setting 100% speed	1rpm	U16	0-9000	Immediate	ALL	NO
2105h	10h	Al setting 100% torque	0.01	U16	0-500	Immediate	ALL	NO
2105h	11h	Al1 function selection	1	U16	0-5	Immediate	ALL	NO
2105h	12h	Al2 function selection	1	U16	0-5	Immediate	ALL	NO

Group 2106h: Expansion parameters

Index	Sub-index	Name	Unit	Data type	Data range	Effective	Modes of operation	PDO mapping
2106h	00h	Extended parameters (protection, auxiliary functions)	-	-	-	-	-	-
2106h	01h	Electronic gear numerator 2 (32-bit)	1	U32	0-1073741824	Immediate	pp hm	NO
2106h	03h	Electronic gear numerator 3 (32-bit)	1	U32	0-1073741824	Immediate	pp hm	NO
2106h	05h	Electronic gear numerator 4 (32-bit)	1	U32	0-1073741824	Immediate	pp hm	NO
2106h	07h	Position deviation clearing function	1	U16	0-3	Immediate	pp hm	NO
2106h	0Ah	Electronic gear ratio switching delay	1	U16	0-1	Restart	pp hm	NO
2106h	0Bh	Potential energy load torque compensation	1%	116	-100-100	Immediate	pp hm csv pv	NO
2106h	0Ch	P06.10 and friction compensation storage options	1	U16	0-2	Immediate	pp hm csv	NO
2106h	0Dh	Forward rotation friction torque compensation	0.1%	116	-3000-3000	Immediate	pp hm csv pv	NO
2106h	0Eh	Reverse rotation friction torque compensation	0.1%	116	-3000-3000	Immediate	pp hm csv pv	NO
2106h	0Fh	Viscous friction compensation	0.1%	116	-3000-3000	Immediate	pp hm csv pv	NO

Index	Sub-index	Name	Unit	Data type	Data range	Effective	Modes of operation	PDO mapping
				3/1			рр	1 111 3
		Friction compensation time					hm	
2106h	10h	constant	0.1ms	U16	0-10000	Immediate	CSV	NO
							pv	
-							рр	
21071	111	Friction compensation low	1	1.14.7	0.500	In a contract of	hm	NO
2106h	11h	speed range	1rpm	U16	0-500	Immediate	CSV	NO
							pv	
							рр	
2106h	14h	Parameter identification	1	U16	100-1000	Restart	hm	NO
210011	1411	speed value	ı	010	100-1000	Restait	CSV	NO
							pv	
							рр	
2106h	15h	Parameter identification	1	U16	50-10000	Restart	hm	NO
210011	1311	acceleration time	1	010	30-10000	Restart	CSV	110
-							pv	
							рр	
2106h	16h	Parameter identification	1	U16	50-10000	Restart	hm	NO
210011	1011	deceleration time	,	010	30 10000	restare	CSV	110
							pv	
							рр	
2106h	17h	Parameter identification	1	U16	0-1	Restart	hm	NO
210011	.,,,,	mode	·	0.10	0 1	restare	CSV	
							pv	
2106h	18h	Initial angle identification	0.1%	U16	0-2000	Restart	ALL	NO
		current limit						
2106h	19h	Instantaneous power failure	1	U16	0-2	Immediate	ALL	NO
		protection						
2106h	1Ah	Instantaneous power failure	1ms	U16	0-10000	Immediate	ALL	NO
		deceleration time						
2106h	1Bh	Servo OFF stop mode	1	U16	0-2	Restart	ALL	NO
		selection						
2106h	1Ch	The second type fault stop	1	U16	0-2	Restart	ALL	NO
		mode selection						
2106h	1Dh	Over-travel input setting	1	U16	0-1	Restart	ALL	NO
2106h	1Eh	Over-travel stop mode	1	U16	0-2	Restart	ALL	NO
2106h	1Fh	Input power phase loss	1	U16	0-1	Immediate	ALL	NO
		protection						
2106h	20h	Output power phase loss	1	U16	0-1	Immediate	ALL	NO
		protection						
2106h	21h	Stop by emergency stop	0.1%	U16	0-5000	Immediate	ALL	NO
		torque						
2106h	22h	Tripping protection function	1	U16	0-1	Immediate	ALL	NO
2106h	23h	Overload warning value	1%	U16	1-100	Immediate	ALL	NO
2106h	24h	Motor overload protection	1%	U16	10-300	Immediate	ALL	NO
		coefficient	.,,			Galate	,	
2106h	25h	Undervoltage protection	1%	U16	50-130	Immediate	ALL	NO
		point						
2106h	26h	Over-speed fault point	1%	U16	50-120	Immediate	ALL	NO

Index	Sub-index	Name	Unit	Data type	Data range	Effective	Modes of operation	PDO mapping
2106h	27h	Maximum input pulse frequency	1KHz	U16	10-9000	Restart	csp pp hm	NO
2106h	28h	Short circuit to ground detection protection selection	1	U16	0-1	Immediate	ALL	NO
2106h	29h	Encoder interference detection delay	1	U16	0-99	Immediate	ALL	NO
2106h	2Ah	Input pulse filtering setting	1	U16	0-500	Restart	pp hm	NO
2106h	2Bh	Input pulse inhibition setting	1	U16	0-3	Restart	pp hm	NO
2106h	2Ch	Deviation clearing input setting	1	U16	0-1	Restart	pp hm	NO
2106h	2Dh	High-speed DI filtering setting	1us	U16	0-10000	Restart	ALL	NO
2106h	2Eh	Overlarge speed deviation threshold	1rpm	U16	0-10000	Immediate	pp hm csv pv	NO
2106h	2Fh	Torque saturation timeout duration	1ms	U16	0-30000	Immediate	ALL	NO
2106h	30h	Absolute system setting	1	U16	0-19	Immediate	ALL	NO
2106h	31h	Encoder battery undervoltage threshold	0.1V	U16	0-33	Immediate	ALL	NO
2106h	32h	High-speed pulse input filtering	1	U16	0-500	Restart	ALL	NO

Group 2107h: Auxiliary function

Index	Sub-index	Name	Unit	Data type	Data range	Effective	Modes of operation	PDO mapping
2107h	00h	Auxiliary function	-	-	-	-	-	-
2107h	01h	Panel display option	1	U16	0-65535	Immediate	ALL	NO
2107h	02h	Panel monitoring parameter setting 1	1	U16	0-69	Immediate	ALL	NO
2107h	03h	Panel monitoring parameter setting 2	1	U16	0-69	Immediate	ALL	NO
2107h	04h	Panel monitoring parameter setting 3	1	U16	0-69	Immediate	ALL	NO
2107h	05h	Panel monitoring parameter setting 4	1	U16	0-69	Immediate	ALL	NO
2107h	06h	Panel monitoring parameter setting 5	1	U16	0-69	Immediate	ALL	NO
2107h	09h	Function selection 1	1	U16	0-65535	Immediate	ALL	NO
2107h	0Ah	Function selection 2	1	U16	0-65535	Immediate	ALL	NO
2107h	0Bh	User password	1	U16	0-65535	Immediate	ALL	NO
2107h	0Ch	Instant memory storage during power outage	1	U16	0-1	Immediate	ALL	NO

Index	Sub-index	Name	Unit	Data type	Data range	Effective	Modes of operation	PDO mapping
2107h	0Dh	User password screen-lock time	1 分钟	U16	1-30	Immediate	ALL	NO
2107h	0Fh	Fast deceleration time	1ms	U16	0-9999	Restart	ALL	NO
2107h	11h	Function selection 3	1	U16	0-65535	Restart	ALL	NO
2107h	12h	Resolution	1	U16	0-99	Immediate	pp hm	NO
2107h	14h	Function selection 5	1	U16	0-65535	Restart	ALL	NO
2107h	15h	Function selection 6	1	U16	0-65535	Restart	ALL	NO
2107h	16h	Function selection 7	1	U16	0-65535	Immediate	ALL	NO
2107h	17h	Function selection 8	1	U16	0-65535	Immediate	ALL	NO
2107h	18h	Fault reset timing	1	U16	0-1	Immediate	ALL	NO
2107h	19h	Positive soft limit (32-bit)	1	132	-2147483648- 2147483647	Restart	ALL	NO
2107h	1Bh	Negative soft limit (32-bit)	1	132	-2147483648- 2147483647	Restart	ALL	NO
2107h	1Dh	Homing signal holding time	1ms	U16	0-65535	Immediate	hm	NO

Group 2108h: Internal position instruction

Index	Sub-index	Name	Unit	Data type	Data range	Effective	Modes of operation	PDO mapping
2108h	00h	Internal position instruction	-	-	-	-		-
2108h	01h	Multi-segment preset position execution method	1	U16	0-5	Restart	pp hm	NO
2108h	02h	Starting segment number	1	U16	1-16	Immediate	pp hm	NO
2108h	03h	Ending segment number	1	U16	1-16	Immediate	pp hm	NO
2108h	04h	Dealing of residual segments after pausing	1	U16	0-1	Immediate	pp hm	NO
2108h	05h	Position instruction type	1	U16	0-1	Restart	pp hm	NO
2108h	06h	Waiting time unit	1	U16	0-1	Immediate	pp hm	NO
2108h	07h	The first segment displacement (32-bit)	1	132	-1073741824- 1073741824	Immediate	pp hm	NO
2108h	09h	The first segment maximum speed	1rpm	U16	1-9000	Immediate	pp hm	NO
2108h	0Ah	The first segment acceleration/deceleration time	1ms	U16	0-65535	Immediate	pp hm	NO
2108h	0Bh	Waiting time after the first segment completed	1ms	U16	0-65535	Immediate	pp hm	NO
2108h	0Ch	The second segment displacement (32-bit)	1	132	-1073741824- 1073741824	Immediate	pp hm	NO
2108h	0Eh	The second segment maximum speed	1rpm	U16	1-9000	Immediate	pp hm	NO

Index	Sub-index	Name	Unit	Data type	Data range	Effective	Modes of operation	PDO mapping
2108h	0Fh	The second segment acceleration/deceleration time	1ms	U16	0-65535	Immediate	pp hm	NO
2108h	10h	Waiting time after the second segment completed	1ms	U16	0-65535	Immediate	pp hm	NO
2108h	11h	The third segment displacement (32-bit)	1	132	-1073741824- 1073741824	Immediate	pp hm	NO
2108h	13h	The third segment maximum speed	1rpm	U16	1-9000	Immediate	pp hm	NO
2108h	14h	The third segment acceleration/deceleration time	1ms	U16	0-65535	Immediate	pp hm	NO
2108h	15h	Waiting time after the third segment completed	1ms	U16	0-65535	Immediate	pp hm	NO
2108h	16h	The fourth segment displacement (32-bit)	1	132	-1073741824- 1073741824	Immediate	pp hm	NO
2108h	18h	The fourth segment maximum speed	1rpm	U16	1-9000	Immediate	pp hm	NO
2108h	19h	The fourth segment acceleration/deceleration time	1ms	U16	0-65535	Immediate	pp hm	NO
2108h	1Ah	Waiting time after the fourth segment completed	1ms	U16	0-65535	Immediate	pp hm	NO
2108h	1Bh	The fifth segment displacement (32-bit)	1	132	-1073741824- 1073741824	Immediate	pp hm	NO
2108h	1Dh	The fifth segment maximum speed	1rpm	U16	1-9000	Immediate	pp hm	NO
2108h	1Eh	The fifth segment acceleration/deceleration time	1ms	U16	0-65535	Immediate	pp hm	NO
2108h	1Fh	Waiting time after the fifth segment completed	1ms	U16	0-65535	Immediate	pp hm	NO
2108h	20h	The sixth segment displacement (32-bit)	1	132	-1073741824- 1073741824	Immediate	pp hm	NO
2108h	22h	The sixth segment maximum speed	1rpm	U16	1-9000	Immediate	pp hm	NO
2108h	23h	The sixth segment acceleration/deceleration time	1ms	U16	0-65535	Immediate	pp hm	NO
2108h	24h	Waiting time after the sixth segment completed	1ms	U16	0-65535	Immediate	pp hm	NO
2108h	25h	The seventh segment displacement (32-bit)	1	132	-1073741824- 1073741824	Immediate	pp hm	NO
2108h	27h	The seventh segment maximum speed	1rpm	U16	1-9000	Immediate	pp hm	NO
2108h	28h	The seventh segment acceleration/deceleration time	1ms	U16	0-65535	Immediate	pp hm	NO

Index	Sub-index	Name	Unit	Data type	Data range	Effective	Modes of operation	PDO mapping
2108h	29h	Waiting time after the seventh segment completed	1ms	U16	0-65535	Immediate	pp hm	NO
2108h	2Ah	The eighth segment displacement (32-bit)	1	132	-1073741824- 1073741824	Immediate	pp hm	NO
2108h	2Ch	The eighth segment maximum speed	1rpm	U16	1-9000	Immediate	pp hm	NO
2108h	2Dh	The eighth segment acceleration/deceleration	1ms	U16	0-65535	Immediate	pp hm	NO
2108h	2Eh	Waiting time after the eighth segment completed	1ms	U16	0-65535	Immediate	pp hm	NO
2108h	2Fh	The ninth segment displacement (32-bit)	1	132	-1073741824- 1073741824	Immediate	pp hm	NO
2108h	31h	The ninth segment maximum speed	1rpm	U16	1-9000	Immediate	pp hm	NO
2108h	32h	The ninth segment acceleration/deceleration	1ms	U16	0-65535	Immediate	pp hm	NO
2108h	33h	Waiting time after the ninth segment completed	1ms	U16	0-65535	Immediate	pp hm	NO
2108h	34h	The 10th segment displacement (32-bit)	1	132	-1073741824- 1073741824	Immediate	pp hm	NO
2108h	36h	The 10th segment maximum speed	1rpm	U16	1-9000	Immediate	pp hm	NO
2108h	37h	The 10th segment acceleration/deceleration time	1ms	U16	0-65535	Immediate	pp hm	NO
2108h	38h	Waiting time after the 10th segment completed	1ms	U16	0-65535	Immediate	pp hm	NO
2108h	39h	The 11th segment displacement (32-bit)	1	132	-1073741824- 1073741824	Immediate	pp hm	NO
2108h	3Bh	The 11th segment maximum speed	1rpm	U16	1-9000	Immediate	pp hm	NO
2108h	3Ch	The 11th segment acceleration/deceleration time	1ms	U16	0-65535	Immediate	pp hm	NO
2108h	3Dh	Waiting time after the 11th segment completed	1ms	U16	0-65535	Immediate	pp hm	NO
2108h	3Eh	The 12th segment displacement (32-bit)	1	132	-1073741824- 1073741824	Immediate	pp hm	NO
2108h	40h	The 12th segment maximum speed	1rpm	U16	1-9000	Immediate	pp hm	NO
2108h	41h	The 12th segment acceleration/deceleration	1ms	U16	0-65535	Immediate	pp hm	NO
2108h	42h	Waiting time after the 12th segment completed	1ms	U16	0-65535	Immediate	pp hm	NO

Index	Sub-index	Name	Unit	Data type	Data range	Effective	Modes of operation	PDO mapping
2108h	43h	The 13th segment displacement (32-bit)	1	132	-1073741824- 1073741824	Immediate	pp hm	NO
2108h	45h	The 13th segment maximum speed	1rpm	U16	1-9000	Immediate	pp hm	NO
2108h	46h	The 13th segment acceleration/deceleration time	1ms	U16	0-65535	Immediate	pp hm	NO
2108h	47h	Waiting time after the 13th segment completed	1ms	U16	0-65535	Immediate	pp hm	NO
2108h	48h	The 14th segment displacement (32-bit)	1	132	-1073741824- 1073741824	Immediate	pp hm	NO
2108h	4Ah	The 14th segment maximum speed	1rpm	U16	1-9000	Immediate	pp hm	NO
2108h	4Bh	The 14th segment acceleration/deceleration time	1ms	U16	0-65535	Immediate	pp hm	NO
2108h	4Ch	Waiting time after the 14th segment completed	1ms	U16	0-65535	Immediate	pp hm	NO
2108h	4Dh	The 15th segment displacement (32-bit)	1	132	-1073741824- 1073741824	Immediate	pp hm	NO
2108h	4Fh	The 15th segment maximum speed	1rpm	U16	1-9000	Immediate	pp hm	NO
2108h	50h	The 15th segment acceleration/deceleration time	1ms	U16	0-65535	Immediate	pp hm	NO
2108h	51h	Waiting time after the 15th segment completed	1ms	U16	0-65535	Immediate	pp hm	NO
2108h	52h	The 16th segment displacement (32-bit)	1	132	-1073741824- 1073741824	Immediate	pp hm	NO
2108h	54h	The 16th segment maximum speed	1rpm	U16	1-9000	Immediate	pp hm	NO
2108h	55h	The 16th segment acceleration/deceleration time	1ms	U16	0-65535	Immediate	pp hm	NO
2108h	56h	Waiting time after the 16th segment completed	1ms	U16	0-65535	Immediate	pp hm	NO
2108h	57h	Position instruction interrupt execution setting	1	U16	0-4	Restart	pp hm	NO
2108h	59h	Homing start method	1	U16	0-4	Restart	pp hm	NO
2108h	5Ah	Homing mode	1	U16	0-8	Restart	pp hm	NO
2108h	5Bh	Limit switch and z-phase signal setting when homing	1	U16	0-5	Restart	pp hm	NO
2108h	5Dh	Origin searching high speed	1rpm	U16	1-3000	Immediate	pp hm	NO
2108h	5Eh	Origin searching low speed	1rpm	U16	1-300	Immediate	pp hm	NO

Index	Sub-index	Name	Unit	Data type	Data range	Effective	Modes of operation	PDO mapping
2108h	5Fh	Acceleration/deceleration			1-10000	Immediate	pp	NO
210011	OFII	time during origin searching	IIIIS	016	1-10000	immediate	hm	INO
2108h	60h	Homing time limit	1ms	U16	1-65535	Immediate	рр	NO
210011	OUN	Homing time limit	IIIIS	016	1-00000	immediate	hm	INO
2108h	61h	Origin offset (22 bit)	1	132	-1073741824-	Immodiata	pp	NO
210811	0111	Origin offset (32-bit)	I	132	1073741824	Immediate	hm	I NO
21006	/ Ola	Mechanical origin offset	1	122	-1073741824-		рр	NIO
2108h	63h	(32-bit)	I	132	1073741824	Immediate	hm	NO

Group 2109h: Communication setting

Index	Sub-index	Name	Unit	Data type	Data range	Effective	Modes of operation	PDO mapping
2109h	00h	Communication setting	-	-	-	-	-	-
2109h	01h	Servo axis address number	1	U16	1-247	Immediate	ALL	NO
2109h	02h	Modbus baud rate	1	U16	0-6	Immediate	ALL	NO
2109h	03h	Modbus data format	1	U16	0-3	Immediate	ALL	NO
2109h	04h	Communication timeout	1ms	U16	0-9999	Immediate	ALL	NO
2109h	05h	Communication response delay	1ms	U16	0-9999	Immediate	ALL	NO
2109h	06h	Communication DI enable setting 1	1	U16	0-65535	Restart	ALL	NO
2109h	07h	Communication DI enable setting 2	1	U16	0-65535	Restart	ALL	NO
2109h	08h	Communication DI enable setting 3	1	U16	0-65535	Restart	ALL	NO
2109h	09h	Communication DI enable setting 4	1	U16	0-65535	Restart	ALL	NO
2109h	0Ah	Communication DO enable setting 1	1	U16	0-65535	Restart	ALL	NO
2109h	0Bh	Communication DO enable setting 2	1	U16	0-65535	Restart	ALL	NO
2109h	0Ch	Communication instruction holding time	1	U16	0-60	Immediate	ALL	NO
2109h	0Dh	CAN communication configuration 1	1	U16	0-65535	Restart	ALL	NO
2109h	0Eh	Bus communication configuration 1	1	U16	0-65535	Restart	ALL	NO
2109h	0Fh	Bus communication configuration 2	1	U16	0-65535	Restart	ALL	NO
2109h	10h	Bus communication configuration 3	1	U16	0-65535	Restart	ALL	NO
2109h	11h	CANopen disconnection detection	1	l16	-20-20	Immediate	ALL	NO
2109h	12h	Bus communication configuration 4	1	U16	0-65535	Immediate	ALL	NO
2109h	13h	CANopen station number setting	1	U16	0-65535	Immediate	ALL	NO

Group 2114h: Key and communication control interface

Index	Sub-index	Name	Unit	Data type	Data range	Effective	Modes of operation	PDO mapping
2114h	00h	Key and communication control interface	-	-	-	-	-	-
2114h	01h	Key JOG trial	1	U16	0-2000	Restart	ALL	NO
2114h	02h	Fault reset	1	U16	0-9	Restart	ALL	NO
2114h	03h	Communication parameter writing and saving	1	U16	0-65535	Immediate	ALL	NO
2114h	04h	Parameter identification function	1	U16	0-5	Restart	ALL	NO
2114h	06h	Automatic calibration of analog input	1	U16	0-2	Restart	ALL	NO
2114h	07h	System initialization function	1	U16	0-99	Restart	ALL	NO
2114h	09h	Communication operation instruction input	1	U16	0-65535	Immediate	ALL	NO
2114h	0Ah	Communication operation status output	1	U16	0-65535	Display parameter	ALL	NO
2114h	0Ch	Communication selection of multi-segment instruction sequence numbers	1	U16	0-16	Immediate	pp hm csv pv	NO
2114h	0Dh	Communication starting homing	1	U16	0-9	Immediate	pp hm	NO

Group 2115h: Status parameters

Index	Sub-index	Name	Unit	Data type	Data range	Effective	Modes of operation	PDO mapping
2115h	00h	Status parameters	-	-	-	-	-	-
2115h	01h	Servo status	1	U16	0-65535	Display parameter	ALL	NO
2115h	02h	Motor speed feedback	1rpm	116	-9000-9000	Display parameter	ALL	NO
2115h	04h	Speed instruction	1rpm	116	-9000-9000	Display parameter	ALL	NO
2115h	05h	Internal torque instruction (relative to rated torque)	0.1%	116	-5000-5000	Display parameter	ALL	NO
2115h	06h	Phase current effective value	0.01A	U16	0-65535	Display parameter	ALL	NO
2115h	07h	Busbar voltage	0.1V	U16	0-65535	Display parameter	ALL	NO
2115h	08h	Absolute position counter (32-bit)	1Unit	132	-1073741824- 1073741824	Display parameter	ALL	NO
2115h	0Ah	Electrical angle	0.1 degree	U16	0-65535	Display parameter	ALL	NO
2115h	0Bh	Mechanical angle (relative to encoder zero point)	0.1 degree	U16	0-65535	Display parameter	ALL	NO
2115h	0Ch	Load inertia identification value	0.01 kg c m²	U16	0-65535	Display parameter	ALL	NO

Index	Sub-index	Name	Unit	Data type	Data range	Effective	Modes of operation	PDO mapping
2115h	0Dh	Speed value relative to input	1rpm	116	-9000-9000	Display	ALL	NO
	ODII	position instruction	прш	110	-7000-7000	parameter	ALL	INO
2115h	0Eh	Position deviation counter	1P	132	-1073741824-	Display	ALL	NO
		(32-bit)			1073741824	parameter		
2115h	10h	Input instruction pulse	1Unit	132	-1073741824-	Display	ALL	NO
		counter (32-bit)			1073741824	parameter		
2115h	12h	Feedback pulse counter (32- bit)	1P	132	-1073741824- 1073741824	Display parameter	ALL	NO
		Position deviation counter			-1073741824-	Display		
2115h	14h	instruction unit (32-bit)	1Unit	132	1073741824	parameter	ALL	NO
		Digital input signal			1070711021	Display		
2115h	16h	monitoring	1	U16	0-511	parameter	ALL	NO
		Digital output signal				Display		
2115h	18h	monitoring	1	U16	0-511	parameter	ALL	NO
	101	-				Display		
2115h	19h	Encoder status	1	U16	0-65535	parameter	ALL	NO
2115	1 4 1	T-1-1 (22 1:1)	0.1-	1122	0.01/7/00//7	Display	A11	NO
2115h	1Ah	Total power-on time (32-bit)	0.1s	U32	0-2147483647	parameter	ALL	NO
2115h	1Ch	Al1 voltage after adjustment	1mV	116	-32768-32767	Display	ALL	NO
	TCII	Arr voitage after aujustifierit	IIIIV	110	-32700-32707	parameter	ALL	NO
2115h	1Dh	AI2 voltage after adjustment	1mV	116	-32768-32767	Display	ALL	NO
				110	02700 02707	parameter	///	110
2115h	1Eh	Al1 voltage before	1mV	116	-32768-32767	Display	ALL	NO
		adjustment				parameter		
2115h	1Fh	Al2 voltage before	1mV	116	-32768-32767	Display	ALL	NO
		adjustment				parameter		
2115h	20h	Module temperature	1° C	U16	0-65535	Display	ALL	NO
		Absolute position encoder			10727/102/	parameter		
2115h	21h	Absolute position encoder turns (32 bit)	1	132	-1073741824- 1073741824	Display parameter	ALL	NO
		Absolute position encoder			-1073741824-	Display		
2115h	22h	turns (H)	1	116	1073741824	parameter	ALL	NO
		Absolute position encoder			-1073741824-	Display		
2115h	23h	single-turn position (32 bit)	1Unit	132	1073741824	parameter	ALL	NO
		Absolute position encoder			-1073741824-	Display		
2115h	24h	single-turn position (H)	1Unit	116	1073741824	parameter	ALL	NO
04451	051		0.01	114.6	0 /5505	Display	A11	NO
2115h	25h	Version code 1	0.01	U16	0-65535	parameter	ALL	NO
2115h	26h	Varsian anda 2	0.01	U16	0-65535	Display	ALL	NO
	2011	Version code 2	0.01	016	0-00000	parameter	ALL	INO
2115h	27h	Version code 3	0.01	U16	0-65535	Display	ALL	NO
	2711	version code o	0.01	010	0 03333	parameter	ALL	110
2115h	28h	Product series code	1	U16	0-65535	Display	ALL	NO
						parameter		
2115h	29h	Fault record display	1	U16	0-9	immediate	ALL	NO
2115h	2Ah	Fault code	1	U16	0-65535	Display	ALL	NO
						parameter		
2115h	2Bh	Time stamp upon selected	0.1s	U32	0-2147483647	Display	ALL	NO
		fault (32-bit)				parameter		

Index	Sub-index	Name	Unit	Data type	Data range	Effective	Modes of operation	PDO mapping
2115h	2Dh	Current rotation speed of the selected fault	1rpm	l16	-9000-9000	Display parameter	ALL	NO
2115h	2Eh	U-phase current of the selected fault	0.01A	U16	0-65535	Display parameter	ALL	NO
2115h	30h	Busbar voltage of the selected fault	0.1V	U16	0-65535	Display parameter	ALL	NO
2115h	31h	Input terminal state of the selected fault	1	U16	0-511	Display parameter	ALL	NO
2115h	32h	Output terminal state of the selected fault	1	U16	0-511	Display parameter	ALL	NO
2115h	33h	Customized software version number	0.01	U16	0-65535	Display parameter	ALL	NO
2115h	34h	Load ratio	1%	U16	0-500	Display parameter	ALL	NO
2115h	35h	Regenerative load ratio	1%	U16	0-500	Display parameter	ALL	NO
2115h	36h	Internal warning code	1	U16	0-65535	Display parameter	ALL	NO
2115h	37h	Current segment number of internal instruction	1	U16	0-99	Display parameter	ALL	NO
2115h	38h	Customized serial code	1	U16	0-65535	Display parameter	ALL	NO
2115h	39h	Absolute position counter high 32 bits (32-bit)	1	132	-1073741824- 1073741824	Display parameter	ALL	NO
2115h	3Bh	Feedback pulse counter high 32 bits (32-bit)	1	132	-1073741824- 1073741824	Display parameter	ALL	NO

9.3 6000H Object dictionary list

Index	Sub-index	Name	Unit	Data type	Access type	Mapping type	Unit
213Ah		VAR	Number of turns of absolute encoder (32-bit)	DINT	ro	Т	Encoder unit
213Bh		VAR	Single turn position of absolute encoder (32-bit)	DINT	ro	Т	*1 Turn
213Ch		VAR	Absolute encoder position (lower 32- bit)	DINT	ro	Т	Encoder unit
213Dh		VAR	Absolute encoder position (higher 32- bit)	DINT	ro	Т	Encoder unit
213Fh		VAR	Internal servo code	UINT	ro	Т	
603Fh		VAR	Error code	UINT	ro	Т	
6040h		VAR	Controlword	UINT	rw	R	
6041h		VAR	Statusword	UINT	ro	Т	
605Ah		VAR	Quick stop mode selection	INT	rw	N	
605Dh		VAR	Pause mode selection	INT	rw	N	
6060h		VAR	Modes of operation	SINT	rw	R	
6061h		VAR	Modes of operation display	SINT	ro	Т	
6062h		VAR	Position demand value	DINT	ro	Т	User instruction unit

Index	Sub-index	Name	Unit	Data type	Access type	Mapping type	Unit
6063h		VAR	Position actual value	DINT	ro	Т	Encoder unit
6064h		VAR	Position actual internal value	DINT	ro	Т	User instruction unit
6065h		VAR	Following error window	UDINT	rw	R	User instruction unit
6066h		VAR	Position deviation time window	UINT	rw	R	ms
6067h		VAR	Position window	UDINT	rw	R	User instruction unit
6068h		VAR	Position window time	UINT	rw	R	ms
606Bh		VAR	Velocity demand value	DINT	ro	Т	Determined by the
606Ch		VAR	Velocity actual value	DINT	ro	Т	hundred's digit of P09.13
606Dh		VAR	Velocity window	UINT	rw	R	0: RPM 1: User instruction
606Eh		VAR	Velocity window time	UINT	rw	R	ms
606Fh		VAR	Velocity threshold	UINT	rw	R	Determined by the hundred's digit of P09.13 0: RPM 1: User instruction
6071h		VAR	Target torque	INT	rw	R	0.1%
6072h		VAR	Max. torque	UINT	rw	R	0.1%
6074h		VAR	Torque demand	INT	ro	T	0.1%
6075h		VAR	Motor rated current	UINT	ro	Т	0.001A
6076h		VAR	Motor rated torque	UINT	ro	Т	0.001Nm
6077h		VAR	Torque actual value	INT	ro	Т	0.1%
6078h		VAR	Actual current value	INT	ro	Т	0.1%
6079h		VAR	DC bus voltage	UDINT	ro	Т	0.001V
607Ah		VAR	Target position	DINT	rw	R	User instruction
607Ch		VAR	Home offset	DINT	rw	R	User instruction
607Dh	0	ARRAY	Soft-limit: Maximum number of Sub- indexes	UINT	ro	N	
607Dh	1	ARRAY	Soft-limit: Min. position limit	DINT	rw	R	User instruction
607Dh	2	ARRAY	Soft-limit: Max. position limit	DINT	rw	R	User instruction
607Eh		VAR	Polarity	USINT	rw	R	
607Fh		VAR	Max. profile velocity	UDINT	rw	Т	Determined by the thousand's digit of P09.13 0: Time unit ms 1: User instruction/s^2
6080h		VAR	Max. motor velocity	UDINT	rw	Т	rpm
6081h		VAR	Profile velocity	UDINT	rw	R	Determined by the
6083h		VAR	Profile acceleration	UDINT	rw	R	thousand's digit of P09.13
6084h		VAR	Profile deceleration	UDINT	rw	R	0: Time unit ms
6085h		VAR	Deceleration for quick stop	UDINT	rw	R	1: User instruction/s^2
6087h		VAR	Torque slope	UDINT	rw	R	Unit: 1‰ /s
608Fh	0	ARRAY	Position encoder resolution	USINT	ro	N	
608Fh	1	ARRAY	Encoder resolution per motor revolution	UDINT	ro	Т	Encoder unit
608Fh	2	ARRAY	Number of motor revolution	UDINT	ro	Т	Revolution
6091h	0	ARRAY	Electronic gear ratio: Maximum number of sub-indexes	UINT	ro	R	
6091h	1	ARRAY	Electronic gear ratio: Numerator	UDINT	rw	R	

Index	Sub-index	Name	Unit	Data type	Access type	Mapping type	Unit
6092h	0	ARRAY	Feed constant: Maximum number of sub-indexes	UINT	ro	R	
6092h	1	ARRAY	Feed constant: Numerator	UDINT	rw	R	
6092h	2	ARRAY	Feed constant: Denominator	UDINT	rw	R	
6093h	0	ARRAY	Position factor: Maximum number of sub-indexes	UINT	ro	N	
6093h	1	ARRAY	Position factor: Numerator	UDINT	rw	R	
6093h	2	ARRAY	Position factor: Feed constant	UDINT	rw	R	
6094h	0	ARRAY	Speed encoder factor: Maximum number of sub-indexes	UINT	ro	N	
6094h	1	ARRAY	Speed encoder factor: Numerator	UDINT	rw	R	
6094h	2	ARRAY	Speed encoder factor: Denominator	UDINT	rw	R	
6095h	0	ARRAY	Speed factor: Maximum number of sub-indexes	UINT	ro	N	
6095h	1	ARRAY	Speed factor 1: Numerator	UDINT	rw	R	
6095h	2	ARRAY	Speed factor 1: Denominator	UDINT	rw	R	
6097h	0	ARRAY	Acceleration factor: Maximum number of Sub-indexes	UINT	ro	N	
6097h	1	ARRAY	Acceleration factor: Numerator	UDINT	rw	R	
6097h	2	ARRAY	Acceleration factor: Denominator	UDINT	rw	R	
6098h		VAR	Homing method	UINT	rw	R	
6099h	0	ARRAY	Homing speed: Maximum number of sub-indexes	UINT	ro	N	
6099h	1	ARRAY	Velocity during search for switch	UDINT	rw	R	Determined by the
6099h	2	ARRAY	Velocity during search for zero	UDINT	rw	R	hundred's digit of P09.13 0: RPM 1: User instruction/s
609Ah		VAR	Homing acceleration	UDINT	rw	R	Determined by the thousand's digit of P09.13 0: Time required for 0-1000RPM (ms) 1: User instruction/s^2
60C0h		VAR	Interpolation sub mode selection	INT	rw	R	
60C1h	0	ARRAY	Interpolation data record: Maximum number of sub-indexes	UINT	ro	N	
60C1h	1	ARRAY	Interpolation offset	UDINT	rw	R	
60C2h	0	ARRAY	Interpolation time period: Maximum number of sub-indexes	UINT	ro	N	
60C2h	1	ARRAY	Interpolation time unit	USINT	rw	R	
60C2h	2	ARRAY	Interpolation time index	SINT	rw	R	
60C5h		VAR	Max. acceleration	UDINT	rw	R	Determined by the thousand's digit of P09.13 0: Time required for 0-1000RPM (ms) 1: User instruction/s^2

Index	Sub-index	Name	Unit	Data type	Access type	Mapping type	Unit
60C6h		VAR	Max. deceleration	UDINT	rw	R	Determined by the thousand's digit of P09.13 0: Time required for 0-1000RPM (ms) 1: User instruction/s^2
60E0h		VAR	Positive torque limit Value	UINT	rw	R	0.1%
60E1h		VAR	Negative torque limit Value	UINT	rw	R	0.1%
60F2h		VAR	Position option code	UINT	rw	R	
60F4h		VAR	Following error actual value	DINT	ro	Т	User instruction
60F8h		VAR	Max. slippage	DINT	rw	R	
60FCh		VAR	Position demand internal value	DINT	ro	Т	User instruction
60FDh		VAR	Digital inputs	UDINT	ro	Т	
60FEh	0	ARRAY	DO outputs: Maximum number of Sub-indexes	UINT	ro	N	
60FEh	1	ARRAY	DO status	UDINT	rw	R	
60FEh	2	ARRAY	Bit masking	UDINT	rw	R	
60FFh		VAR	Target velocity	UDINT	rw	R	Determined by the hundred's digit of P09.13 0: RPM 1: User instruction /s
6502h		VAR	Supported drive modes	UDINT	ro	Т	

6000h Object dictionary description

Object description		Object entry description		
Property	Value	Property	Value	
Index	213A _h	Sub-index	00 _h	
Name	Single turn position for absolute encoder 32bit	Access property	ro	
Data structure	Variable	PDO mapping type	TPDO	
Data type	Integer32	Data range	-2147483648~2147483647	
Modes of operation	ALL	Default	0	

Display the actual number of turns for absolute encoder, which is same as P21.32.

Object 213B _h : Single turn position of absolute encoder (32-bit)					
Object description		Object entry description			
Property	Value	Property	Value		
Index	213B _h	Sub-index	00 _h		
Name	Single turn position for absolute encoder 32bit	Access property	ro		
Data structure	Variable	PDO mapping type	TPDO		
Data type	Integer32	Data range	-2147483648~2147483647		
Modes of operation	ALL	Default	0		

Display the actual single-turn position for absolute encoder, which is same as P21.34.

Object 213C _h : Absolute encoder position (lower 32bit)				
Object description		Object entry description		
Property	Value	Property	Value	
Index	213C _h	Sub-index	00 _h	
Name	Absolute encoder position (lower 32bit)	Access property	ro	
Data structure	Variable	PDO mapping type	TPDO	
Data type	Integer32	Data range	-2147483648~2147483647	
Modes of operation	ALL	Default	0	

Display actual absolute encoder position (lower 32bit).

Object description		Object entry description	
Property Value		Property	Value
Index	213D _h	Sub-index	00 _h
N.I.	Absolute encoder position (higher	A coope property	
Name	32-bit)	Access property	ro
Data structure	Variable	PDO mapping type	TPDO
Data type	Integer32	Data range	-2147483648~2147483647
Modes of operation	ALL	Default	0

Display actual absolute encoder position (higher 32bit).

Object 213F _n : Internal servo code				
Object description		Object entry description	Object entry description	
Property	Value	Property	Value	
Index	213F _h	Sub-index	00 _h	
Name	Error code	Access property	ro	
Data structure	Variable	PDO mapping type	TPDO	
Data type	unsigned16	Data range	0~65535	
Modes of operation	ALL	Default	0	

Display servo drive error code, which is consistent with the number of the panel display error code.

Object description		Object entry description	Object entry description	
Property Value		Property	Value	
Index	603F _h	Sub-index	00 _h	
Name	Controlword	Access property	ro	
Data structure	Variable	PDO mapping type	TPDO	
Data type	unsigned16	Data range	0~65535	
Modes of operation	ALL	Default	0	

Display CiA protocol error code.

Note: This not internal error code. For error code, refer to 213Fh.

Object 6040 _h :Controlword				
Object description		Object entry description		
Property Value		Property	Value	
Index	6040 _h	Sub-index	00 _h	
Name	Controlword	Access property	rw	
Data structure	Variable	PDO mapping type	RPDO	
Data type	unsigned16	Data range	0~65535	
Modes of operation	ALL	Default	0	

Used for enabling and clearing alarms, starting the specified command in different modes.

bit	Definition	
0	Servo ready	0: Invalid 1: Valid
1	Main circuit connected	0: Invalid 1: Valid
2	Quick stop	1: Invalid 0: Valid
3	Servo operation	0: Invalid 1: Valid
4~6	Relative to modes of operation	
7	Fault reset	Bit7 rising edge is valid When Bit7=1, other instructions become invalid.
8	Pause	0: Invalid 1: Valid
9~15	Reserved	

Note: 1. It is meaningless to assign the value to each bit of Statusword. It must be combined with other bits to form a certain control instruction.

2. Bit0 ~bit3 must be sent to switch the servo process according to CiA402 state machine and correctly import into the expected state.

Object 6041 _h :Statusword				
Object description		Object entry description	Object entry description	
Property	Value	Property	Value	
Index	6041 _h	Sub-index	00 _h	
Name	Statusword	Access property	ro	
Data structure	Variable	PDO mapping type	TPDO	
Data type	unsigned16	Data range	0~65535	
Modes of operation	ALL	Default	0	

bit	Definition	
0	Servo ready	0: Invalid 1: Valid
1	Start servo running	0: Invalid 1: Valid
2	Servo operation	0: Invalid 1: Valid
3	Servo fault	0: Invalid 1: Valid
4	Main circuit voltage connected	0: Invalid 1: Valid
5	Quick stop	1: Invalid 0: Valid
6	Servo not running	0: Invalid 1: Valid
7	Alarm	0: Invalid 1: Valid
8	For manufacturer's use	Reserved
9	Remote control	0: Invalid 1: Valid
10	Target arrival (relative to modes operation)	0: Invalid 1: Valid
11	Internal software limit	0: Invalid 1: Valid
12~13	Relative to modes of operation	
14	For manufacturer's use	Reserved
15	Homing completion	0: Invalid 1: Valid In absolute system, when the second digit of P09.14 is set to 2, bit15 will be set to 1 (hold at power-failure) after homing completion. When P20.06=7, clear the bit15 status bit.

The following are the basic statuswords (X represents any value).

Statusword (binary)	Description
XXXX XXXX X0XX 0000	Servo is not ready (Not ready to switch)
XXXX XXXX X1XX 0000	Servo startup failure (Switch on disable)
XXXX XXXX X01X 0001	Servo is ready (Ready to switch on)
XXXX XXXX X01X 0011	Servo is started (Switch on)
XXXX XXXX X01X 0111	Servo operation enable (Operation enable)
XXXX XXXX X00X 0111	Quick stop is active (Quick stop active)
XXXX XXXX X0XX 1111	Fault reaction is active (Fault reaction active)
XXXX XXXX X0XX 1000	Servo fault (Fault)

Note: After Controlword6040h sends commands in sequence, the Statusword6041h displays the current status of the servo.

Object 605A _h :Quick stop mode selection				
Object description		Object entry description		
Property	Value	Property	Value	
Index	605A _h	Sub-index	00 _h	
Name	Quick stop mode selection	Access property	rw	
Data structure	Variable	PDO Mapping type	NO	
Data type	Integer16	Data range	0~7	
Modes of operation	ALL	Default	1	

When Controlword6040hbit2=0, the quick stop mode is determined by 605Ah.

Setting value	Stop mode	
0	ecelerate to stop as set in P06.26 and remain free.	
1	Decelerate to stop according to 6084h deceleration time and remain free.	
2	Decelerate to stop according to 6085h deceleration time and remain free.	
3	ecelerate to stop according to 6085h deceleration time and remain free.	
4	ot defined, cannot be set.	
5	Decelerate to stop according to 6084h deceleration time, and keep position locked.	
6	Decelerate to stop according to 6085h deceleration time, and keep position locked.	
7	Decelerate to stop according to 6085h deceleration time, and keep position locked.	

Note: If 605A h is set to 0, the stop mode is related to the setting of P06.26: if P06.26 is set to 0, the emergency stop mode is coast to stop; if P06.26 is set to 1 or 2, the emergency stop will be in accordance with the deceleration of the 6084h to stop, and the stop mode will be kept in the free mode after stopping.

If 605A h is set to any of 1, 2, 3, 5, 6, or 7, the emergency stop in ALL mode is performed as described in the table above.

Object 605D _h : Pause mode selection				
Object description		Object entry description		
Property	Value	Property	Value	
Index	605D _h	Sub-index	00 _h	
Name	Halt option code	Access property	rw	
Data structure	Variable	PDO Mapping type	NO	
Data type	Integer16	Data range	-32768~32767	
Modes of operation	ALL	Default	1	

When Controlword 6040hbit8 pause function is valid, the pause effect is determined by 605Dh.

Setting value	Stop mode	
0	Not supported, cannot be set.	
1	Decelerate to stop according to 6084h deceleration time, and keep position locked.	
2	Decelerate to stop according to 6085h deceleration time, and keep position locked.	

Note: If $605D\ h$ is set to 1 or 2, the pause in ALL mode is performed as described in the table above.

Object 6060 _n :Modes of operation				
Object description		Object entry description		
Property	Value	Property	Value	
Index	6060 _h	Sub-index	00 _h	
Name	Modes of operation	Access property	rw	
Data structure	Variable	PDO Mapping type	RPDO	
Data type	integer8	Data range	0~10	
Modes of operation	ALL	Default	0	

Select the modes of operation

Setting value	Definition	
1	Profile position mode (PP)	Refer to section 5.2
2	Velocity mode	Not supported
3	Profile velocity mode (PV)	Refer to section 5.3
4	Profile torque mode (PT)	Refer to section 5.4
6	Homing method (HM)	Refer to section 5.5
7	Interpolation mode (IP)	Refer to section 5.6

Object 6061 _h :Modes of operation display				
Object description		Object entry description		
Property	Value	Property	Value	
Index	6061 _h	Sub-index	00 _h	
Name	Modes of operation display	Access property	ro	
Data structure	Variable	PDO Mapping type	TPDO	
Data type	integer8	Data range	0~10	
Modes of operation	ALL	Default	0	

Display the modes of operation display

Value	Definition	
1	Profile position mode (PP)	Refer to section 5.2
3	Profile velocity mode (PV)	Refer to section 5.3
4	Profile torque mode (PT)	Refer to section 5.4
6	Homing method (HM)	Refer to section 5.5
7	Interpolation mode (IP)	Refer to section 5.6

Object description		Object entry description	
Property	Value	Property	Value
Index	6062 _h	Sub-index	00 _h
Name	Position demand value	Access property	ro
Data structure	Variable	PDO Mapping type	TPDO
Data type	Integer32	Data range	-2147483648~2147483647
Modes of operation	PP/HM	Default	0

Object 6063 _h :Position actual internal value				
Object description		Object entry description		
Property	Value	Property	Value	
Index	6063 _h	Sub-index	00 _h	
Name	Position actual internal value	Access property	ro	
Data structure	Variable	PDO Mapping type	TPDO	
Data type	Integer32	Data range	-2147483648~2147483647	
Modes of operation	ALL	Default	0	

Display motor absolute position actual value in real time, same as P21.17 (encoder unit)

Object description		Object entry description	
Property	Value	Property	Value
Index	6064 _h	Sub-index	00 _h
Name	Position actual internal value	Access property	ro
Data structure	Variable	PDO Mapping type	TPDO
Data type	Integer32	Data range	-2147483648~2147483647
Modes of operation	ALL	Default	0

Display motor absolute position actual value in real time, same as P21.17 (encoder unit)

Object 6065h:Following error window				
Object description		Object entry description		
Property	Value	Property	Value	
Index	6065 _h	Sub-index	00 _h	
Name	Following error window	Access property	rw	
Data structure	Variable	PDO Mapping type	RPDO	
Data type	unsigned32	Data range	0~ 4294967295	
Modes of operation	PP/HM	Default	100000000	

When the difference between position demand value 6062h and position actual value 6064h exceeds ±6065h, the overlarge position deviation Err.043 occurs.

Note: The following error window is the smaller of P00.19 and 6065h.

Object 6066 _n :Position deviation time window				
Object description		Object entry description		
Property	Value	Property	Value	
Index	6066 _h	Sub-index	00 _h	
Name	Position deviation time window	Access property	rw	
Data structure	Variable	PDO Mapping type	RPDO	
Data type	Unsigned16	Data range	0~65535	
Modes of operation	PP/HM	Default	0	

If the Value of 60F4h exceeds the overlarge position deviation threshold (the smaller value of P00.19 and 6065h) and the duration is greater than the 6066h set value, bit 13 of the 6041h status word will be set to 1.

Object 6067 _h :Position window				
Object description		Object entry description		
Property	Value	Property	Value	
Index	6067 _h	Sub-index	00 _h	
Name	Position window	Access property	rw	
Data structure	Variable	PDO Mapping type	RPDO	
Data type	unsigned32	Data range	0~ 4294967295	
Modes of operation	PP/HM	Default	100000000	

In position mode, when the difference between the position demand value 6062h and the user's position actual value 6064h is within ±6067h, and the time reaches 6068h, then the position reached and bit10 of Statusword 6041h becomes 1.

In position mode, when the servo is enabled, this flag is ON.

Note: The position arrival threshold value is based on the smaller value of P04.47 and 6067, and the position completion output is also related to P04.48.

Object 6068 _h :Position window time				
Object description		Object entry description		
Property	Value	Property	Value	
Index	6068 _h	Sub-index	00 _h	
Name	Position window time	Access property	rw	
Data structure	Variable	PDO Mapping type	RPDO	
Data type	Unsigned16	Data range	0~65535	
Modes of operation	PP/HM	Default	0	

In position mode, the holding time refers to the time when the difference between the position demand value 6062h and the user's position actual value 6064h is within \pm 6067h, the position reaches and the bit10 of Statusword 6041h becomes 1.

In position mode, when the servo is enabled, this flag is ON.

Note: Use this function to set P04.48 to 2. Take the larger value between 6068h and P04.49 positioning completion holding time as a reference.

Object description		Object entry description	
Property	Value	Property	Value
Index	606B _h	Sub-index	00 _h
Name	Velocity demand value	Access property	ro
Data structure	Variable	PDO Mapping type	TPDO
Data type	integer 32	Data range	-2147483648~2147483647
Modes of operation	PV/CSV	Default	0

Display actual velocity instruction. If converted into velocity unit, it is same as P21.03.

Object description		Object entry description	
Property	Value	Property	Value
Index	606C _h	Sub-index	00 _h
Name	Velocity actual value	Access property	ro
Data structure	Variable	PDO Mapping type	TPDO
Data type	integer 32	Data range	-2147483648~2147483647
Modes of operation	ALL	Default	0

Object 606D _h :Velocity window				
Object description		Object entry description		
Property	Value	Property	Value	
Index	606D _h	Sub-index	00 _h	
Name	Velocity window	Access property	rw	
Data structure	Variable	PDO Mapping type	RPDO	
Data type	Unsigned16	Data range	0~65535	
Modes of operation	PV/CSV	Default	65535	

When the difference between the target velocity 60FFh and the user actual speed 606Ch is within \pm 606Dh, and the time reaches 606Eh, the speed arrives. The bit10 of Statusword 6041h becomes 1 and DO is enabled.

In profile velocity mode and cycle sync velocity mode, this flag is ON when the servo is enabled.

Object 606E _n :Velocity window time				
Object description		Object entry description		
Property	Value	Property	Value	
Index	606E _h	Sub-index	00 _h	
Name	Velocity window time	Access property	rw	
Data structure	Variable	PDO Mapping type	RPDO	
Data type	Unsigned16	Data range	0~65535	
Modes of operation	PV/CSV	Default	0	

When the difference between the target velocity 60FFh and user actual speed 606Ch is within \pm 606Dh, and the time reaches 606Eh, then the speed arrives. The bit10 of Statusword 6041h becomes 1 and DO is enabled.

In Profile velocity mode and cycle sync velocity mode, this flag is ON when the servo is enabled.

Object description		Object entry description		
Property	Value	Property	Value	
Index	606F _h	Sub-index	00 _h	
Name	Velocity threshold	Access property	rw	
Data structure	Variable	PDO Mapping type	RPDO	
Data type	Unsigned16	Data range	0~65535	
Modes of operation	PV	Default	65535	

When the user velocity feedback 606Ch is within \pm 606Fh and the time reaches 606Eh setting value, it means that the user speed is 0 and bit12 of 6041h becomes 1.

In profile velocity mode, this flag turns ON. This flag has nothing to do with the enabling of the servo.

Object 6071 _h :Target torque				
Object description		Object entry description		
Property	Value	Property	Value	
Index	6071 _h	Sub-index	00 _h	
Name	Target torque	Access property	rw	
Data structure	Variable	PDO Mapping type	RPDO	
Data type	integer16	Data range	-5000~5000	
Modes of operation	PT/CST	Default	0	

Torque setting in PT/CST mode. Unit is 0.1%.

100.0% corresponds to 1 time of rated motor torque.

Object 6072 _h :Maximum torque				
Object description		Object entry description	Object entry description	
Property	Value	Property	Value	
Index	6072 _h	Sub-index	00 _h	
Name	Maximum torque	Access property	rw	
Data structure	Variable	PDO Mapping type	RPDO	
Data type	unsigned16	Data range	0~5000	
Modes of operation	ALL	Default	5000	

Set the maximum torque of the motor. Maximum torque instruction (Unit is 0.1%)

Take the smaller value of 6072h maximum torque and internal torque limit parameter (P03.08, 03.09).

Object 6074 _h :Torque demand			
Object description		Object entry description	
Property	Value	Property	Value
Index	6074 _h	Sub-index	00 _h
Name	Torque demand	Access property	ro
Data structure	Variable	PDO Mapping type	TPDO
Data type	integer16	Data range	-5000~5000
Modes of operation	ALL	Default	0

Display the internal torque value in real time in the servo operation. Unit is 0.1%.

100.0% corresponds to 1 time of rated motor torque.

Object description		Object entry description		
Property	Value	Property	Value	
Index	6075 _h	Sub-index	00 _h	
Name	Motor rated current	Access property	ro	
Data structure	Variable	PDO Mapping type	TPDO	
Data type	integer16	Data range	0~65535	
Modes of operation	ALL	Default	-	

Object description		Object entry description		
Property	Value	Property	Value	
Index	6076 _h	Sub-index	00 _h	
Name	Motor rated torque	Access property	ro	
Data structure	Variable	PDO Mapping type	TPDO	
Data type	integer16	Data range	0~65535	
Modes of operation	ALL	Default	-	

Object 6077 _h :Torque actual value				
Object description		Object entry description		
Property	Value	Property	Value	
Index	6077 _h	Sub-index	00 _h	
Name	Torque actual value	Access property	ro	
Data structure	Variable	PDO Mapping type	TPDO	
Data type	integer16	Data range	-5000~5000	
Modes of operation	ALL	Default	0	

Display the torque feedback inside the servo in real time.

100.0% corresponds to 1 time of rated motor torque. Same as P21.04. Unit is 0.1%.

Object description		Object entry description	Object entry description	
Property	Value	Property	Value	
Index	6078 _h	Sub-index	00 _h	
Name	Actual current value	Access property	ro	
Data structure	Variable	PDO Mapping type	TPDO	
Data type	integer16	Data range	-32768~32767	
Modes of operation	ALL	Default	0	

Display the actual current value in real time (Unit: 0.1% of rated value).

Object 6079 _n :DC bus voltage value				
Object description		Object entry description	Object entry description	
Property	Value	Property	Value	
Index	6079 _h	Sub-index	00 _h	
Name	DC bus voltage value	Access property	ro	
Data structure	Variable	PDO Mapping type	TPDO	
Data type	Unsigned32	Data range	0~ 4294967295	
Modes of operation	ALL	Default	0	

Display bus voltage (Unit: 1mv), same as the bus voltage in P21.06.

Object 607A _h :Target position				
Object description		Object entry description		
Property	Value	Property	Value	
Index	607A _h	Sub-index	00 _h	
Name	Target position	Access property	rw	
Data structure	Variable	PDO Mapping type	RPDO	
Data type	Integer32	Data range	-2147483648~2147483647	
Modes of operation	PP	Default	0	

Set the target position in profile position mode and cycle sync position mode.

In profile position mode, if running the absolute instructions, the user absolute position 6064h = 607Ah after positioning is completed. If running relative instructions, the user's travel distance increment will be equal to 607Ah after positioning is completed.

Object 607C _h :Home offset				
Object description		Object entry description		
Property	Value	Property	Value	
Index	607C _h	Sub-index	00 _h	
Name	Home offset	Access property	rw	
Data structure	Variable	PDO Mapping type	RPDO	
Data type	Integer32	Data range	-2147483648~2147483647	
Modes of operation	НМ	Default	0	

- 1. After the homing is completed, the motor stop position is the mechanical origin. By setting 607Ch, the relationship between mechanical origin and mechanical zero can be set: mechanical origin = mechanical zero + 607C (origin offset). When 607C=0, the mechanical origin coincides with the mechanical zero point.
- 2. The conditions for effective origin offset: Run at power-on, the homing is completed, bit15 of the statusword 6041h=1.
- 3. In homing modes, first select the homing method(6098h) from the host controller, then set the homing speed (6099–1h 6099–2h) and homing acceleration speed(609Ah). After the homing trigger signal is given, the servo will automatically find the mechanical origin according to the setting and complete the relative position relationship between the mechanical origin and the mechanical zero.

For example: By means of homing method 35, take the current position as mechanical origin. After the homing is completed, the user's current position 6064h= 607Ch, and the motor shaft will not rotate.

 $Mechanical\ origin: A\ fixed\ position\ on\ the\ machine,\ corresponding\ to\ the\ origin\ switch,\ limit\ switch,\ Z\ signal\ of\ the\ motor,\ etc.$

Mechanical zero: Absolute position 0 on the machine

Object description		Object entry description	
Property	Value	Property	Value
Index	607D _h	Sub-index	00 _h
Name	Number of sub-indexes of soft limit	Access property	Rw
Data structure	/	PDO Mapping type	RPDO
Data type	Unsigned8	Data range	0~512
Modes of operation	ALL	Default	2

When the position feedback reaches the internal soft limit, it will stop at the reach limit, the servo reports an overtravel alarm (AL.086 or AL.087), and bit11 of status word 6041h = 1, i.e., the soft limit is in effect. At this time, inputting a reverse motion instruction can exit the servo from the position overrun state and clear bit11 to zero.

In torque mode and speed mode, the soft limit function is constrained by P06.28, when P06.28=1, the soft limit is invalid. Enable the soft limit P06.28=0, P07.08=1 or 2 as follows:

Object description		Object entry description	
Property	Value	Property	Value
Index	607D _h	Sub-index:	01 _h
Name	Minimum software position limit	Access property	Rw
Data structure	/	PDO Mapping type	RPDO
Data type	Integer32	Data range	-2147483648~2147483647
Modes of operation	ALL	Default	-2147483648

Software limit function: The fourth digit of P07.08 from the right

- 0: Disable software limit
- 1: Enable software limit after power-on
- 2: Enable software limit after homing is completed

Set the minimum value of the software absolute position limit. When the value is -2147483648, it means the negative direction is not limited. Minimum software position limit = (607D-01h)

Property	Value	Property	Value
Index	607D _h	Sub-index:	02 _h
Name	Maximum software position limit	Access property	Rw

Data structure	/	PDO Mapping type	RPDO
Data type	Integer32	Data range	-2147483648~2147483647
Modes of operation	ALL	Default	2147483647

Software limit function: The fourth digit of P07.08 from the right

- 0: Disable software limit
- 1: Enable software limit after power-on
- 2: Enable software limit after homing is completed

Set the maximum value of the software absolute position limit. When the value is 2147483647, it means the positive direction is not limited. Maximum software position limit = (607D-02h)

Object description		Object entry description	Object entry description	
Property	Value	Property	Value	
Index	607E _h	Sub-index	00 _h	
Name	Polarity	Access property	rw	
Data structure	Variable	PDO Mapping type	RPDO	
Data type	Unsigned8	Data range	0~1	
Modes of operation		Default	0	

Set the polarity for torque instruction, position instruction and speed instruction. When using, the speed, position and torque polarity should be 0 (Bit5~7 is 0) or set 224(Bit5~7 is 1). After setting 607Eh, this function will become effective after restarting the power supply.

Bit	Definition
0	Reserved
1	Reserved
2	Reserved
3	Reserved
4	Reserved
5	Torque instruction 6071h/60B2h×(-1)
6	Speed instruction 60FFh/60B1h×(-1)
7	Position instruction 607Ah/60B0h×(-1)

Object 607F _n : Max. profile velocity				
Object description		Object entry description	Object entry description	
Property	Value	Property	Value	
Index	607F _h	Sub-index	00 _h	
Name	Max. Profile Velocity	Access property	rw	
Data structure	Variable	PDO Mapping type	TPDO	
Data type	Unsigned32	Data range	0~4294967295	
Modes of operation	PP/PV/PT/CSV/CST	Default	13107200	

Maximum speed limit in PP/PV/PT/CSV/CST modes. Unit: instruction unit/S

PP/PV/CSV mode, the maximum speed limit is based on the smaller value of 607Fh and 6080h.

PT/CST mode, the maximum speed limit is based on the smaller Value of 607Fh, 6080h, and internal speed limit (P03.27, P03.28).

Object 6080 _h :Max. motor velocity				
Object description		Object entry description		
Property	Value	Property	Value	
Index	6080 _h	Sub-index	00 _h	
Name	Max. motor velocity	Access property	rw	
Data structure	Variable	PDO Mapping type	TPDO	
Data type	Unsigned32	Data range	0~4294967295	
Modes of operation	ALL	Default	6500	

Maximum motor speed is set at 6080h to protect the motor and is valid in all modes. Unit: Rpm/min

- 1. In speed mode, the maximum speed limit is based on the smaller value of 607Fh and 6080h.
- 2. In torque mode, the maximum speed limit is based on the smaller value of 607Fh, 6080h and internal speed limit (P03.27, P03.28).
- 3. In position mode, the maximum speed limit of PP mode is based on the smaller value of 607Fh and 6080h.

Object 6081 _h :Profile velocity			
Object description		Object entry description	
Property	Value	Property	Value
Index	6081 _h	Sub-index	00 _h
Name	Profile velocity	Access property	rw
Data structure	Variable	PDO Mapping type	RPDO
Data type	Unsigned32	Data range	0~4294967295
Modes of operation	PP	Default	0

It represents the speed of offset instruction at constant speed in profile position mode. Unit: User instruction Unit/S

The actual operation speed of 6081h is limited by the smaller value between 607F and 6080.

Object 6083 _h :Profile acceleration					
Object description		Object entry description			
Property	Value	Property	Value		
Index	6083 _h	Sub-index	00 _h		
Name	Profile acceleration	Access property	rw		
Data structure	Variable	PDO Mapping type	RPDO		
Data type	Unsigned32	Data range	0~4294967295		
Modes of operation	PP/PV	Default	13107200		

The fourth bit from the right of operation panel P09.13 can set the acceleration unit.

When it is 0: The meaning of the profile position mode is the acceleration of the motor from 0rpm to 1000rpm corresponding to the position of the given instruction, the unit is rpm/ms;

When it is 1: User instruction unit/S2

Object 6084 _h :Profile deceleration				
Object description		Object entry description		
Property Value		Property	Value	
Index	6084 _h	Sub-index	00 _h	
Name	Profile deceleration	Access property	rw	
Data structure	Variable	PDO Mapping type	RPDO	
Data type	Unsigned32	Data range	0~4294967295	
Modes of operation	ALL	Default	131072000	

- 1. The fourth digit from the right of P09.13 on the operation panel can set the acceleration unit: when it is 0, the unit is rpm/ms; when it is 1, the unit is the unit of the user instruction / S2.
- 2. ALL mode operation, for quick stop: set 605A = 1 or 5; for emergency stop: decelerate to stop according to 6084h.
- 3. ALL mode operation, for pause: set 605D=1 and decelerate to stop according to 6084h.
- 4. ALL mode operation, for OFF stop: set P06.26=1 or 2, and decelerate to stop according to 6084h.
- 5. ALL mode operation, for NO2 fault: set P06.27=1, and decelerate to stop according to 6084h.

Object 6085 _n :Quick stop deceleration speed					
Object description		Object entry description			
Property Value		Property	Value		
Index	6085 _h	Sub-index	00 _h		
Name	Quick stop deceleration speed	Access property	rw		
Data structure	Variable	PDO Mapping type	RPDO		
Data type	Unsigned32	Data range	0~4294967295		
Modes of operation	ALL	Default	4294967295		

- 1. The fourth position from the right of operation panel P09.13 can reduce the speed unit: when it is 0: the unit is rpm/ms; when it is 1: the unit is user's instruction/S2.
- 2. ALL mode operation, for quick stop: set 605A=2,3,6,7 (any one of them); for emergency stop, decelerate to stop according to 6085h.
- 3. ALL mode operation, for pause: set 605D=2 and decelerate to stop according to 6085h.
- 4. ALL mode operation, for over-travel stop: decelerate and stop according to 6085h.

Object description		Object entry description	
Property	Value	Property	Value
Index	6087 _h	Sub-index	00 _h
Name	Torque slope	Access property	rw
Data structure	Variable	PDO Mapping type	RPDO
Data type	Unsigned32	Data range	0~4294967295
Modes of operation	PT/CST	Default	1000

Object 608F _h :Position enc	oder resolution		
Object description		Object entry description	
Property	Value	Property	Value
Index	608F _h	Sub-index	00 _h
Name	Position encoder resolution	Access property	Ro
Data structure	/	PDO Mapping type	NO
Data type	Unsigned8	Data range	0~2
Modes of operation	ALL	Default	2
Property	Value	Property	Value
Index	608F _h	Sub-index	01 _h
Name	Motor encoder resolution	Access property	Rw
Data structure	/	PDO Mapping type	NO
Data type	Unsigned32	Data range	1~4294967295
Modes of operation	ALL	Default	131072
Property	Value	Property	Value
Index	608F _h	Sub-index	02 _h
Name	Motor resolution corresponding to the number of motor revolution	Access property	Rw
Data structure	/	PDO Mapping type	NO
Data type	Unsigned32	Data range	1~4294967295
Modes of operation	ALL	Default	1

The electronic gear ratio is formed by 6091h and 6092h. For specific relationship, refer to 6091h electronic gear ratio.

Object 6091 _h :Electronic gear ratio					
Object description		Object entry description			
Property	Value	Property	Value		
Index	6091 _h	Sub-index	00 _h		
Name	Number of electronic gear ratio index	Access property	Rw		
Data structure	/	PDO Mapping type	RPDO		
Data type	Unsigned8	Data range	0~512		
Modes of operation	ALL	Default	2		
Property	Value	Property	Value		
Index	6091 _h	Sub-index	01 _h		
Name	Electronic gear ratio: Numerator	Access property	Rw		
Data structure	/	PDO Mapping type	RPDO		
Data type	Unsigned32	Data range	1~4294967295		
Modes of operation	ALL	Default	1		
Property	Value	Property	Value		
Index	6091 _h	Sub-index	02 _h		
Name	Electronic gear ratio: Denominator	Access property	Rw		
Data structure	/	PDO Mapping type	RPDO		
Data type	Unsigned32	Data range	1~4294967295		
Modes of operation	ALL	Default	1		

The X5E servo drive provides 2 sets of electronic gear ratio schemes, one is the default parameter inside the X5E servo, and the other is to enable the 608Fh/6091h/6092h schemes, which are switched via the second digit from the right of P09.13.

608Fh/6091h/6092h is not enabled when the 2nd digit from the right of P09.13 is set to 0 . In this case, P00.08 and P00.10/P00.12 are effective;

608Fh/ 6091h/6092h is enabled when the 2nd digit from the right of P09.13 is set to 1. In this case, P00.08 and P00.10/P00.12 are not effective.

	608Fh_01 (Motor encoder resolution)		motor revolution)
608F*6091/6092 = (Electronic gear ratio)	608Fh_02(Encoder resolution corresponds to the number of motor revolution)		6091h_02(Number of drive axis revolution)
	6092h_01(Host device setting value)		
	6092h 02(Number of driv	e axis	revolution)

• Internal speed=60FFh*6091h Numerator*6092h Denominator *60 /6091h Denominator /6092h Numerator. Speed feedback coincides with instruction. The third digit of P09.13 from the right determines the speed unit. 0: RPM, 1: User instruction/s, the speed unit is determined by 6091h and 6092h.

• Allowable range for gear ratio setting: Encoder resolution/10000000 ≤ Gear ratio ≤ Encoder resolution/2.5

For example: The upper instruction should be set to be one revolution per 10000 drive shafts: 6091h (1: 1) 6092h (10000: 1)

Object 6092 _h :Feed consta	ant			
Object description		Object entry description		
Property	Value	Property	Value	
Index	6092 _h	Sub-index	00 _h	
Name	Number of sub-indexes	Access property	Rw	
Data structure	/	PDO Mapping type	RPDO	
Data type	Unsigned8	Data range	0~512	
Modes of operation	ALL	Default	2	
Property	Value	Property	Value	
Index	6092 _h	Sub-index	01 _h	
Name	Feed constant: Numerator	Access property	Rw	
Data structure	/	PDO Mapping type	RPDO	
Data type	Unsigned32	Data range	1~4294967295	
Modes of operation	ALL	Default	131072(17bit encoder)	
Property	Value	Property	Value	
Index	6092 _h	Sub-index	02 _h	
Name	Feed constant: Denominator	Access property	Rw	
Data structure	/	PDO Mapping type	RPDO	
Data type	Unsigned32	Data range	1~4294967295	
Modes of operation	ALL	Default	1	
The electronic gear ratio is f	formed by 608Fh and 6091h. For specific	relationship, refer to 6091h ele	ctronic gear ratio.	

Object 6093 _h :Position fac	tor		
Object description		Object entry description	
Property	Value	Property	Value
Index	6093 _h	Sub-index	00 _h
Name	Number of sub-indexes	Access property	Rw
Data structure	/	PDO Mapping type	RPDO
Data type	Unsigned8	Data range	0~512
Modes of operation	ALL	Default	2
Property	Value	Property	Value
Index	6093 _h	Sub-index	01 _h
Name	Position factor: Numerator	Access property	Rw
Data structure	/	PDO Mapping type	RPDO
Data type	Unsigned32	Data range	1~4294967295
Modes of operation	ALL	Default	1
Property	Value	Property	Value
Index	6092 _h	Sub-index	02 _h
Name	Position factor: Denominator	Access property	Rw
Data structure	/	PDO Mapping type	RPDO
Data type	Unsigned32	Data range	1~4294967295
Modes of operation	ALL	Default	1
Reserved	,	· · · · · · · · · · · · · · · · · · ·	'

Object 6094 _h :Speed enco	oder factor		
Object description		Object entry description	
Property	Value	Property	Value
Index	6094 _h	Sub-index	00 _h
Name	Number of sub-indexes	Access property	Rw
Data structure	/	PDO Mapping type	RPDO
Data type	Unsigned8	Data range	0~512
Modes of operation	ALL	Default	2
Property	Value	Property	Value
Index	6094 _h	Sub-index	01 _h
Name	Speed encoder factor: Numerator	Access property	Rw
Data structure	/	PDO Mapping type	RPDO
Data type	Unsigned32	Data range	1~4294967295
Modes of operation	ALL	Default	1
Property	Value	Property	Value
Index	6094 _h	Sub-index	02 _h
Name	Speed encoder factor: Denominator	Access property	Rw
Data structure	/	PDO Mapping type	RPDO
Data type	Unsigned32	Data range	1~4294967295
Modes of operation	ALL	Default	1
Reserved		•	

bject description		Object entry description	
roperty	Value	Property	Value
dex	6095 _h	Sub-index	00 _h
ame	Number of sub-indexes	Access property	Rw
ata structure	/	PDO Mapping type	RPDO
ata type	Unsigned8	Data range	0~512
odes of operation	ALL	Default	2
roperty	Value	Property	Value
dex	6095 _h	Sub-index	01 _h
ame	Speed factor: Numerator	Access property	Rw
ata structure	/	PDO Mapping type	RPDO
ata type	Unsigned32	Data range	1~4294967295
odes of operation	ALL	Default	1
roperty	Value	Property	Value
dex	6095 _h	Sub-index	02 _h
ame	Speed factor: Denominator	Access property	Rw
ata structure	/	PDO Mapping type	RPDO
ita type	Unsigned32	Data range	1~4294967295
des of operation	ALL	Default	1

Object 6097 _h :Acceleratio	n speed factor		
Object description		Object entry description	
Property	Value	Property	Value
Index	6095 _h	Sub-index	00 _h
Name	Number of sub-indexes	Access property	Rw
Data structure	/	PDO Mapping type	RPDO
Data type	Unsigned8	Data range	0~512
Modes of operation	ALL	Default	2
Property	Value	Property	Value
Index	6095 _h	Sub-index	01 _h
Name	Acceleration speed factor: Numerator	Access property	Rw
Data structure	/	PDO Mapping type	RPDO
Data type	Unsigned32	Data range	1~4294967295
Modes of operation	ALL	Default	1
Property	Value	Property	Value
Index	6092 _h	Sub-index	02 _h
Name	Acceleration speed factor: De- nominator	Access property	Rw
Data structure	/	PDO Mapping type	RPDO
Data type	Unsigned32	Data range	1~4294967295
Modes of operation	ALL	Default	1
Reserved			

Object 6098 _h :Homing method				
Object description		Object entry description	Object entry description	
Property	Value	Property	Value	
Index	6098 _h	Sub-index	00 _h	
Name	Homing method	Access property	rw	
Data structure	Variable	PDO Mapping type	RPDO	
Data type	Integer8	Data range	0~35	
Modes of operation	НМ	Default	0	

All 31 kinds of homing methods are specified based on homing switch signal, limit switch signal, and encoder Z-phase signal. For details, refer to section 5.5 Homing method.

Object 6099 _h :Homing speed				
Object description		Object entry description		
Property	Value	Property	Value	
Index	6099 _h	Sub-index	00 _h	
Name	Number of sub-indexes	Access property	RO	
Data structure	/	PDO Mapping type	NO	
Data type	Unsigned8	Data range	0~512	
Modes of operation	НМ	Default	2	
Property	Value	Property	Value	
Index	6099 _h	Sub-index	01 _h	
Name	Velocity during search for switch	Access property	Rw	
Data structure	/	PDO Mapping type	RPDO	
Data type	Unsigned32	Data range	1~4294967295	
Modes of operation	НМ	Default	218453	
Property	Value	Property	Value	
Index	6099 _h	Sub-index	02 _h	
Name	Velocity during search for zero	Access property	Rw	
Data structure	/	PDO Mapping type	RPDO	
Data type	Unsigned32	Data range	1~4294967295	
Modes of operation	НМ	Default	21845	

Set the speed unit type at the third digit from the right of P09.13. When it is set to 1, the speed unit is user instruction /S; When it is set to 0, it is rpm.

Two kinds of speed in homing method: Speed 60990120h can be set as the higher value, which is used to make quick prediction; Speed 60990220h can be set as the lower speed, which is used for accurate positioning.

Object description		Object entry description	Object entry description	
Property	Value	Property	Value	
Index	609A _h	Sub-index	00 _h	
Name	Homing acceleration	Access property	rw	
Data structure	Variable	PDO Mapping type	RPDO	
Data type	unsigned32	Data range	0~4294967295	
Modes of operation	НМ	Default	1310720	

The fourth digit from the right of P09.13 can set the type of acceleration unit, when it is set to 1, the speed unit is user instruction /S; When it is set to 0, it is rpm.

For example:

When P09.13=16#X0XX, it means the acceleration time that the motor accelerates from 0rpm to 1000rpm. Unit: ms

Object 60C0 _h :Interpolation sub-mode selection				
Object description		Object entry description		
Property	Value	Property	Value	
Index	60C0 _h	Sub-index	00 _h	
Name	Interpolation sub-mode selection	Access property	rw	
Data structure	Variable	PDO Mapping type	RPDO	
Data type	Integer16	Data range	-32768~32767	
Modes of operation	IP	Default	0	

Interpolation curve selection in position interpolation mode

Value	Interpolation mode	
-32768~-1	For manufacturer use	
0	Linear interpolation	
1~32767	Reserved	

Object 60C1 _h : Interpolation data record				
Object description		Object entry description		
Property	Value	Property	Value	
Index	60C1 _h	Sub-index	00 _h	
Name	Number of sub-indexes	Access property	Rw	
Data structure	/	PDO Mapping type	RPDO	
Data type	Unsigned8	Data range	0~512	
Modes of operation	IP	Default	1	
Property	Value	Property	Value	
Index	60C1 _h	Sub-index	01 _h	
Name	Interpolation offset	Access property	Rw	
Data structure	/	PDO Mapping type	RPDO	
Data type	Integer32	Data range	-2147483648~2147483647	
Modes of operation	IP	Default	0	

For the position instruction in interpolation position mode, the interpolation offset is absolute offset instruction. Each time the sync cycle comes, the host device sends offset instruction to the slave. Unit: p/s

Object 60C2 _h :Interpolation cycle				
Object description		Object entry description		
Property	Value	Property	Value	
Index	6099 _h	Sub-index	00 _h	
Name	Number of sub-indexes	Access property	Rw	
Data structure	/	PDO Mapping type	RPDO	
Data type	Unsigned8	Data range	0~512	
Modes of operation	IP	Default	2	
Property	Value	Property	Value	
Index	60C2 _h	Sub-index	01 _h	
Name	Interpolation time unit	Access property	Rw	
Data structure	/	PDO Mapping type	RPDO	
Data type	Unsigned8	Data range	0~512	
Modes of operation	IP	Default	1	

Set the interpolation cycle in interpolation position mode.(unit: ms)

60C20108h is the time constant of interpolation cycle. (ms)

Property	Value	Property	Value
Index	60C2 _h	Sub-index	02 _h
Name	Interpolation time index	Access property	Rw
Data structure	/	PDO Mapping type	RPDO
Data type	Integer8	Data range	-255~255
Modes of operation	IP	Default	-3

60C20208h is the unit of interpolation cycle time.

⁻³ represents ms of time unit.

Object description		Object entry description	Object entry description	
Property	Value	Property	Value	
Index	60C5 _h	Sub-index	00 _h	
Name	Max. acceleration	Access property	rw	
Data structure	Variable	PDO Mapping type	RPDO	
Data type	Unsigned32	Data range	0~4294967295	
Modes of operation	PP/PV/HM	Default	1000000000	

The fourth bit from the right of P09.13 can set the unit of acceleration.

When it is 0: It represents the acceleration speed of offset instruction acceleration in profile position/profile velocity mode. Set the max. acceleration speed in profile position mode, profile velocity mode and homing mode, which is limited by 6083h.

It means the max. acceleration speed that the motor accelerates from 0 rpm to 1000 rpm. Unit: rpm/ms.

When it is 1: User instruction unit/S^

Object 60C6 _n :Max. deceleration				
Object description		Object entry description		
Property Value		Property	Value	
Index	60C6 _h	Sub-index	00 _h	
Name	Max. deceleration	Access property	rw	
Data structure	Variable	PDO Mapping type	RPDO	
Data type	Unsigned32	Data range	0~4294967295	
Modes of operation	PP/PV/HM	Default	100000000	

The fourth bit from the right of P09.13 can set the unit of acceleration.

When it is 0: It represents the deceleration speed of offset instruction acceleration in the profile position/profile velocity mode. Set the max. deceleration speed in profile position mode, profile velocity mode, and homing mode, which is limited by 6084h.

It means the max. deceleration speed that the motor accelerates from 0rpm to 1000rpm. Unit: rpm/ms.

When it is 1: User instruction unit/S².

Object description		Object entry description	
Property	Value	Property	Value
Index	60E0 _h	Sub-index	00 _h
Name	Positive direction Max. torque limit	Access property	rw
Data structure	Variable	PDO Mapping type	RPDO
Data type	Unsigned16	Data range	0~65535
Modes of operation	ALL	Default	10000

Limit the max. torque in positive direction. Unit: 0.1%

Object 60E1 _h :Negative direction Max. torque limit				
Object description		Object entry description		
Property	Value	Property	Value	
Index	60E1 _h	Sub-index	00 _h	
Name	Negative direction Max. torque limit	Access property	rw	
Data structure	Variable	PDO Mapping type	RPDO	
Data type	Unsigned16	Data range	0~65535	
Modes of operation	ALL	Default	10000	

Limit the max. torque in negative direction. Unit: 0.1%

Object description		Object entry description	
Property	Value	Property	Value
Index	60F2 _h	Sub-index	00 _h
Name	Positioning option code	Access property	rw
Data structure	Variable	PDO Mapping type	RPDO
Data type	Unsigned16	Data range	0~65535
Modes of operation	PP/IP	Default	0

Object 60F4 _h :Following error actual value			
Object description		Object entry description	
Property	Value	Property	Value
Index	60F4 _h	Sub-index	00 _h
Name	Following error actual value	Access property	ro
Data structure	Variable	PDO Mapping type	TPDO
Data type	Integer32	Data range	-2147483648~2147483647
Modes of operation	PP/HM	Default	0

Display the actual position deviation (user position unit)

Object 60F8 _h :Max. slippage				
Object description		Object entry description	Object entry description	
Property	Value	Property	Value	
Index	60F8 _h	Sub-index	00 _h	
Name	Max. slippage	Access property	ro	
Data structure	Variable	PDO Mapping type	RPDO	
Data type	Integer32	Data range	-2147483648~2147483647	
Modes of operation	PV	Default	100000000	

Monitor whether the maximum slippage is reached, used for asynchronous motors.

Object 60FC _n :Position demand internal value			
Object description		Object entry description	
Property	Value	Property	Value
Index	60FC _h	Sub-index	00 _h
Name	Position demand internal value	Access property	ro
Data structure	Variable	PDO Mapping type	TPDO
Data type	Integer32	Data range	0~4294967295
Modes of operation	PP/HM	Default	0

Display the real-time position instruction of the motor.

Position demand value (6062h)× Position factor (6093h) = Position instruction of motor 60FCh (encoder unit)

Object 60FD _h :Digital inputs			
Object description		Object entry description	
Property	Value	Property	Value
Index	60FD _h	Sub-index	00 _h
Name	Digital inputs	Access property	ro
Data structure	Variable	PDO Mapping type	TPDO
Data type	Unsigned32	Data range	0~4294967295
			6291459
Modes of operation	ALL	Default	(0 0110 0000 0000 0000 0000
			0011)

Display DI input status, the default is 0 when no level is input.

Bit	Definition
0	Negative limit switch (DI function code 15)
1	Positive limit switch (DI function code 14)
2	Origin switch (DI function code 28)
3~9	Reserved
10	Z-pulse (No need to set)
11	Reserved
12	Reserved
13	Emergency stop (DI function code 30)
	Corresponding to DI1 (P4.01) terminal logic and
16	function selection.
17	Corresponding to DI2 (P4.02) terminal logic and
17	function selection.
18	Corresponding to DI3 (P4.03) terminal logic and
10	function selection.
19	Corresponding to DI4 (P4.04) terminal logic and
	function selection.
20	Corresponding to DI5 (P4.05) terminal logic and
	function selection.
21	Corresponding to DI6 (P4.06) terminal logic and
	function selection.
22	Corresponding to DI7 (P4.07) terminal logic and
	function selection.
23	Corresponding to DI8 (P4.08) terminal logic and
	function selection.
24	Corresponding to DI9 (P4.09) terminal logic and
	function selection.
25~31	Reserved

The logic level of DI terminal can be modified via P04.11~P04.19, DI6 and DI7 are positive and negative limit switches from the factory, and the default high level is valid.

Object 60FE _h :Forced DO output				
Object description		Object entry description	Object entry description	
Property	Value	Property	Value	
Index	60FE _h	Sub-index	00 _h	
Name	Number of sub-indexes	Access property	Rw	
Data structure	/	PDO Mapping type	RPDO	
Data type	Unsigned8	Data range	0~512	
Modes of operation	ALL	Default	2	
Property	Value	Property	Value	
Index	60FE _h	Sub-index	01 _h	
Name	Forced DO output status	Access property	Rw	
Data structure	/	PDO Mapping type	RPDO	
Data type	Unsigned32	Data range	0~4294967295	
Modes of operation	ALL	Default	0	

Property	Value	Property	Value
Index	60FE _h	Sub-index	02 _h
Name	Bit shielding	Access property	Rw
Data structure	/	PDO Mapping type	RPDO
Data type	Unsigned32	Data range	0~4294967295
Modes of operation	ALL	Default	0

This function can force the output of DO, X5E EtherCAT servo supports DO1~DO3.

Bit	Definition
0	Reserved
1~15	Reserved
16~24	DO1~DO3 output

Usage: For example, forced DO1~DO3 output function

First, turn on the forced DO1~DO3 function: that is, set 60FEh-02h=458752 (111 0000 0000 0000 0000)

Then, forced output DO1~DO3 is valid: i.e. set 60FEh-01h=458752 (111 0000 0000 0000 0000)

Object 60FF _h :Target velocity			
Object description		Object entry description	
Property	Value	Property	Value
Index	60FF _h	Sub-index	00 _h
Name	Target velocity	Access property	rw
Data structure	Variable	PDO Mapping type	RPDO
Data type	Integer32	Data range	-2147483648~2147483647
Modes of operation	PV/CSV	Default	0
Set instruction speed instru	ction in profile velocity/sync cycle	speed mode.	

Object 6502 _h :Supported servo operation mode			
Object description		Object entry description	
Property	Value	Property	Value
Index	6502 _h	Sub-index	00 _h
Name	Supported servo operation mode	Access property	ro
Data structure	Variable	PDO Mapping type	TPDO
Data type	Unsigned32	Data range	0~4294967295
Modes of operation	ALL	Default	45

Display the supported servo operation mode

Bit	Definition	
0	Profile position mode (PP)	Supported, refer to section 5.2
2	Profile velocity mode (PV)	Supported, refer to section 5.3
3	Profile torque mode (PT)	Supported, refer to section 5.4
5	Homing method (HM)	Supported, refer to section 5.5

Innovation Integrity Service

HCFA

HCFA ATC

Zhejiang Hechuan Technology Co., Ltd.

No.9, Fucai Road, Longyou Industrial Zone, Quzhou City, Zhejiang Province, P.R. China

R&D Center (Hangzhou)

No. 299, Lixin Road, Qingshanhu Road, Lin'an District, Hangzhou City, Zhejiang Province, P.R. China

\(400 TEL - 400-012-6969

HCFA Official Website - www.hcfa.cn

This manual may include information about other products, their names, trademarks, or registered trademarks, which are the property of other companies and not owned by HCFA. The information provided in this manual is subject to change without prior notice.